首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6912篇
  免费   467篇
  国内免费   2篇
  7381篇
  2023年   40篇
  2022年   41篇
  2021年   77篇
  2020年   57篇
  2019年   74篇
  2018年   205篇
  2017年   186篇
  2016年   228篇
  2015年   360篇
  2014年   319篇
  2013年   458篇
  2012年   567篇
  2011年   555篇
  2010年   355篇
  2009年   296篇
  2008年   357篇
  2007年   345篇
  2006年   361篇
  2005年   297篇
  2004年   283篇
  2003年   256篇
  2002年   260篇
  2001年   212篇
  2000年   170篇
  1999年   142篇
  1998年   58篇
  1997年   42篇
  1996年   38篇
  1995年   30篇
  1994年   28篇
  1993年   18篇
  1992年   56篇
  1991年   45篇
  1990年   39篇
  1989年   29篇
  1988年   39篇
  1987年   41篇
  1986年   30篇
  1985年   27篇
  1984年   37篇
  1983年   20篇
  1982年   20篇
  1981年   14篇
  1979年   17篇
  1978年   17篇
  1974年   13篇
  1973年   15篇
  1972年   11篇
  1971年   11篇
  1851年   10篇
排序方式: 共有7381条查询结果,搜索用时 0 毫秒
21.
The structure and absolute configuration of desangeloylshairidin, a guaianolide isolated from Guillonea scabra, have been established by X-ray diffraction analysis. No conformational change was observed in its seven-membered ring between the crystal and deuterochloroform solution states.  相似文献   
22.
23.
Summary The Herring bodies in the posterior lobe of the bovine hypophysis are very large (2–600 ) and can be classified into three types. The type I Herring body contains an accumulation of neurosecretory granules. These Herring bodies are very scarce and should not be confused with the numerous, but small, axonal swellings which also contain neurosecretory granules.The type II Herring body is characterized by the presence of a varying number of normal, moderately electron dense and empty vesicles, autophagic vacuoles, multilamellate bodies and occasional mitochondria. These Herring bodies are frequently observed.The type III Herring body is typified by the presence of dense vesicles connected to tubular formations which contain material of variable electron density, of filaments, and of long slender and very numerous mitochondria.The presence of multilamellate bodies and autophagic vacuoles suggests that the type II Herring body is in a degenerating phase. This concept is further substantiated by the similarity between this type of Herring body and transected neurosecretory axons in which degeneration is occurring.A similar comparison suggests that the type III Herring body is undergoing a regenerative process. Our current concept of the structure and function of Herring bodies is revised in the discussion.This work was supported by grants 5 RO1 NB 06641 NEUA and 5 R0107492 NEUA from the National Institutes of Health and the Space Sciences Research Center of the University of Missouri. The technical assistance of Mrs. G. Clark and Mr. R. Faup, and the clerical assistance of Mrs. S. Schmidt are gratefully acknowledged.Fellow of the Conséjo National de Investigaciones Científicas y Tecnicas de la República Argentína.  相似文献   
24.
Summary According to the internal structure and size of the granules, six types of nerve endings can be distinguished in the toad median eminence: 1. Endings containing mostly dense granules of 600 Å in diameter; 2. Endings containing dense granules of about 800 Å in diameter; 3. Endings which contain dense granules 1,000–2,000 Å in diameter, with the peak at 1,200–1,400 Å; 4. Endings containing granules with a characteristic structure, which differentiate them from the other three types; 5. Scarce endings containing granules 2,000 to 3,800 Å in diameter; and 6. Endings containing only vesicles 400–500 Å in diameter. Types 3 and 4 endings are mainly found in the outer pericapillary zone, and are probably responsible for the strong Gomori-positive reaction observed in this zone. The other four types of endings occur mainly in the inner pericapillary zone, and appear to be Gomori-negative.The probable origins of the different types of endings, and their possible relations with the different releasing factors is discussed.The subendothelial basement membrane has numerous long processes which form a complicated network in contact with all the nerve endings, some nerve fibres and glial cells.Two types of glial cells are described. Pinocytotic vesicles are frequently seen at the points where these cells contact the basement membrane. All the ultrastructural features suggest that these cells are carrying out transport functions.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.The author is very grateful to Professor H. Heller for his continued encouragement and criticism and to Mr. J. Lane and Mr. P. Heap for their valuable help.  相似文献   
25.
26.
27.
The presence of neuron-specific enolase (NSF) and neurofilament proteins (NFP) immunoreactivities (IR) was investigated in dorsal root ganglia (DRG) of adult rats at cervical, thoracic, lumbar and sacral levels. All neurons display NSE-like IR with a variable intensity of immunostain which is not related to the neuronal size. Conversely, the antibody against all three proteic subunits of NFP no labelled the primary sensory neurons, whereas the intraganglionic axons and dorsal root of spinal nerves result positives. In the sciatic nerve the immunoreactivity was similar for NSE- and NFP-like IR. No regional differences were found among the different levels of DRG for NSE-like IR. The present results demonstrate heterogeneity in the neurons of the rat. DRG for NSE-like IR, and differences between sensory neurons and fibers in the distribution of NFP-like IR.  相似文献   
28.
29.
The element Cd is considered to have no biological function and is highly toxic to humans and animals. Toxic effects of this metal upon cell membrane structure and function have been shown. On the other hand, Ca is an essential element in a wide variety of cellular activities. The present study was initiated to research whether the interaction between Ca and Cd could affect D-galactose absorption across the rabbit jejunum in vitro. In media with Ca2+, when CdCl2 was present at 0.5 or 1 mM, Cd was found to significantly reduce the sugar absorption. In Ca2+-free media, where CaCl2, was omitted and replaced isotonically with choline chloride, the sugar transport was not modified by Cd, but when CaCl2 was replaced isotonically with MgCl2, the inhibition is observed. Verapamil at 10−6 M (blocking mainly Ca2+ transport) did not modify the inhibitory effect of cadmium on D-galactose transport. When 10−6 M of A 23187 (Ca2+ specific ionophore) was added in media with/without Ca2+; CdCl2 produced no change in D-galactose transport. These results suggest that Ca and Cd could have affinity for the same chemical groups of enterocyte membrane, which would be related with the intestinal absorption of D-galactose.  相似文献   
30.
The present study was designed to investigate the controversial subject of the existence of a neural input from the pineal organ via the pineal tract to the subcommissural organ (SCO) in teleosts and anurans. Horseradish peroxidase was injected into the pineal organ and pineal tract of Carassius auratus and Rana perezi. Within the pinealofugal fibers the tracer was visualized at the light-and electron-microscopic levels either by immunocytochemistry using an anti-peroxidase serum, or by revealing the enzymatic activity of peroxidase. In both species, labeled myelinated and unmyelinated fibers of the pineal tract were readily traced by means of electron microscopy. In R. perezi, numerous terminals contacting the SCO cells in a synapse-like (synaptoid, hemisynaptic) manner bore the label, whereas a different population of endings was devoid of the tracer, indicating that in this species the SCO receives a dual neural input, one of pineal origin, the other of unknown source and nature. In the SCO of C. auratus, neither labeled nor unlabeled synapse-like contacts were found. Thus, in this latter species, a direct neural input to the SCO is missing. It is concluded that the secretory activity of the SCO can be controlled by different mechanisms in different species, and that more than one neural input mechanism may operate in the same species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号