首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   63篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   15篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   6篇
  2016年   15篇
  2015年   33篇
  2014年   35篇
  2013年   35篇
  2012年   38篇
  2011年   49篇
  2010年   25篇
  2009年   22篇
  2008年   29篇
  2007年   31篇
  2006年   21篇
  2005年   34篇
  2004年   43篇
  2003年   30篇
  2002年   30篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   9篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
  1959年   2篇
  1958年   2篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1938年   1篇
  1855年   1篇
排序方式: 共有603条查询结果,搜索用时 31 毫秒
101.
The yeast Snu13p protein and its 15.5K human homolog both bind U4 snRNA and box C/D snoRNAs. They also bind the Rsa1p/NUFIP assembly factor, proposed to scaffold immature snoRNPs and to recruit the Hsp90-R2TP chaperone complex. However, the nature of the Snu13p/15.5K–Rsa1p/NUFIP interaction and its exact role in snoRNP assembly remained to be elucidated. By using biophysical, molecular and imaging approaches, here, we identify residues needed for Snu13p/15.5K–Rsa1p/NUFIP interaction. By NMR structure determination and docking approaches, we built a 3D model of the Snup13p–Rsa1p interface, suggesting that residues R249, R246 and K250 in Rsa1p and E72 and D73 in Snu13p form a network of electrostatic interactions shielded from the solvent by hydrophobic residues from both proteins and that residue W253 of Rsa1p is inserted in a hydrophobic cavity of Snu13p. Individual mutations of residues in yeast demonstrate the functional importance of the predicted interactions for both cell growth and snoRNP formation. Using archaeal box C/D sRNP 3D structures as templates, the association of Snu13p with Rsa1p is predicted to be exclusive of interactions in active snoRNPs. Rsa1p and NUFIP may thus prevent premature activity of pre-snoRNPs, and their removal may be a key step for active snoRNP production.  相似文献   
102.
The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf) mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K+) channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K+ conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K+ ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K+ channels in the regulation of allometric scaling and coordination of growth in the zebrafish.  相似文献   
103.
Gambogic acid (GA), the main active component of gamboge resin, has potent antitumor activity both in vivo and in vitro. However, the underlying molecular mechanisms remain unclear. In this study, we found that GA could initiate autophagy in colorectal cancer cells, and inhibition of the autophagy process accelerated the effect of proliferative inhibition and apoptotic cell death induced by GA, implying a protective role of autophagy. Two-dimensional electrophoresis-based proteomics showed that GA treatment altered the expression of multiple proteins involved in redox signaling and lipid metabolism. Functional studies revealed that GA-induced dysregulation of lipid metabolism could activate 5-lipoxygenase (5-LOX), resulting in intracellular ROS accumulation, followed by inhibition of Akt-mTOR signaling and autophagy initiation. Finally, results using a xenograft model suggested ROS-induced autophagy protect against the antitumor effect of GA. Taken together, these data showed new biological activities of GA against colorectal cancer underlying the protective role of ROS-induced autophagy. This study will provide valuable insights for future studies regarding the anticancer mechanisms of GA.  相似文献   
104.
105.
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of expression of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein with high specificity for G-quartet RNA structure. FMRP is involved in several steps of mRNA metabolism: nucleocytoplasmic trafficking, translational control and transport along dendrites in neurons. Fragile X Related Protein 1 (FXR1P), a homologue and interactor of FMRP, has been postulated to have a function similar to FMRP, leading to the hypothesis that it can compensate for the absence of FMRP in Fragile X patients. Here we analyze the ability of three isoforms of FXR1P, expressed in different tissues, to bind G-quartet RNA structure specifically. Only the longest FXR1P isoform was found to be able to bind specifically the G-quartet RNA, albeit with a lower affinity as compared to FMRP, whereas the other two isoforms negatively regulate the affinity of FMRP for G-quartet RNA. This result is important to decipher the molecular basis of fragile X syndrome, through the understanding of FMRP action in the context of its multimolecular complex in different tissues. In addition, we show that the action of FXR1P is synergistic rather than compensatory for FMRP function.  相似文献   
106.
107.
108.
Cyanobacterial mats are common in Antarctic lakes, ponds and on moist soils. The species comprising these mats have adapted to tolerate extreme conditions (e.g. high salinities and UV radiation, freezing and extended periods of darkness). In this study, cyanobacterial mats were collected from shallow melt-water ponds in Pyramid Trough in Southern Victoria Land, Antarctica. Eight strains were isolated and characterised by morphological and molecular (16S rRNA gene sequences) techniques and their fatty acid methyl ester (FAME) and lipid class profiles determined. These data were compared to parallel information obtained from cyanobacterial cultures isolated from New Zealand. In general, the morphological and molecular characterisation complemented each other, and the Antarctic strains identified belonged to the orders: Oscillatoriales (six), Nostocales (one) and Chroococcales (one). Two of the Antarctic strains (CYN67 and CYN68) showed low similarity (<96% 16S rRNA gene sequence) when compared to other cultured cyanobacteria. The fatty acid (FA) profiles from the Antarctic and New Zealand strains shared many similarities with palmitic (C16:0), stearic (C18:0) and oleic acid (C18:1n-9) most abundant. In contrast, the lipid class analysis differed among geographic locations with Antarctic strains containing higher amounts of hydrocarbons and eicosapentaenoic and hexadecatrienoic acids.  相似文献   
109.
Conservation agriculture (CA) is widely promoted as a sustainable agricultural management strategy with the potential to alleviate some of the adverse effects of modern, industrial agriculture such as large‐scale soil erosion, nutrient leaching and overexploitation of water resources. Moreover, agricultural land managed under CA is proposed to contribute to climate change mitigation and adaptation through reduced emission of greenhouse gases, increased solar radiation reflection, and the sustainable use of soil and water resources. Due to the lack of official reporting schemes, the amount of agricultural land managed under CA systems is uncertain and spatially explicit information about the distribution of CA required for various modeling studies is missing. Here, we present an approach to downscale present‐day national‐level estimates of CA to a 5 arcminute regular grid, based on multicriteria analysis. We provide a best estimate of CA distribution and an uncertainty range in the form of a low and high estimate of CA distribution, reflecting the inconsistency in CA definitions. We also design two scenarios of the potential future development of CA combining present‐day data and an assessment of the potential for implementation using biophysical and socioeconomic factors. By our estimates, 122–215 Mha or 9%–15% of global arable land is currently managed under CA systems. The lower end of the range represents CA as an integrated system of permanent no‐tillage, crop residue management and crop rotations, while the high estimate includes a wider range of areas primarily devoted to temporary no‐tillage or reduced tillage operations. Our scenario analysis suggests a future potential of CA in the range of 533–1130 Mha (38%–81% of global arable land). Our estimates can be used in various ecosystem modeling applications and are expected to help identifying more realistic climate mitigation and adaptation potentials of agricultural practices.  相似文献   
110.
Summary The isolation of related genes with evolutionary conserved motifs by the application of polymerase chain reaction-based molecular biology techniques, or from database searching strategies, has facilitated the identification of new members of protein families. Many of these protein molecules will be involved in protein-protein interactions (e.g. growth factors, receptors, adhesion molecules), since such interactions are intrinsic to virtually every cellular process. However, the precise biological function and specific binding partners of these novel proteins are frequently unknown, hence they are known as ‘orphan’ molecules. Complementary technologies are required for the identification of the specific ligands or receptors for these and other orphan proteins (e.g., antibodies raised against crude biological extracts or whole cells). We describe herein several alternative strategies for the identification, purification and characterisation of orphan peptide and protein molecules, specifically the synergistic use of micropreparative HPLC and biosensor techniques. These authors made equivalent contributions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号