首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   34篇
  2023年   3篇
  2022年   11篇
  2021年   13篇
  2020年   15篇
  2019年   15篇
  2018年   24篇
  2017年   6篇
  2016年   17篇
  2015年   19篇
  2014年   25篇
  2013年   50篇
  2012年   30篇
  2011年   19篇
  2010年   21篇
  2009年   15篇
  2008年   13篇
  2007年   15篇
  2006年   14篇
  2005年   15篇
  2004年   11篇
  2003年   12篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有429条查询结果,搜索用时 31 毫秒
81.

Introduction

Metabolomics is a well-established tool in systems biology, especially in the top–down approach. Metabolomics experiments often results in discovery studies that provide intriguing biological hypotheses but rarely offer mechanistic explanation of such findings. In this light, the interpretation of metabolomics data can be boosted by deploying systems biology approaches.

Objectives

This review aims to provide an overview of systems biology approaches that are relevant to metabolomics and to discuss some successful applications of these methods.

Methods

We review the most recent applications of systems biology tools in the field of metabolomics, such as network inference and analysis, metabolic modelling and pathways analysis.

Results

We offer an ample overview of systems biology tools that can be applied to address metabolomics problems. The characteristics and application results of these tools are discussed also in a comparative manner.

Conclusions

Systems biology-enhanced analysis of metabolomics data can provide insights into the molecular mechanisms originating the observed metabolic profiles and enhance the scientific impact of metabolomics studies.
  相似文献   
82.

Background

The microbial communities populating human and natural environments have been extensively characterized with shotgun metagenomics, which provides an in-depth representation of the microbial diversity within a sample. Microbes thriving in urban environments may be crucially important for human health, but have received less attention than those of other environments. Ongoing efforts started to target urban microbiomes at a large scale, but the most recent computational methods to profile these metagenomes have never been applied in this context. It is thus currently unclear whether such methods, that have proven successful at distinguishing even closely related strains in human microbiomes, are also effective in urban settings for tasks such as cultivation-free pathogen detection and microbial surveillance. Here, we aimed at a) testing the currently available metagenomic profiling tools on urban metagenomics; b) characterizing the organisms in urban environment at the resolution of single strain and c) discussing the biological insights that can be inferred from such methods.

Results

We applied three complementary methods on the 1614 metagenomes of the CAMDA 2017 challenge. With MetaMLST we identified 121 known sequence-types from 15 species of clinical relevance. For instance, we identified several Acinetobacter strains that were close to the nosocomial opportunistic pathogen A. nosocomialis. With StrainPhlAn, a generalized version of the MetaMLST approach, we inferred the phylogenetic structure of Pseudomonas stutzeri strains and suggested that the strain-level heterogeneity in environmental samples is higher than in the human microbiome. Finally, we also probed the functional potential of the different strains with PanPhlAn. We further showed that SNV-based and pangenome-based profiling provide complementary information that can be combined to investigate the evolutionary trajectories of microbes and to identify specific genetic determinants of virulence and antibiotic resistances within closely related strains.

Conclusion

We show that strain-level methods developed primarily for the analysis of human microbiomes can be effective for city-associated microbiomes. In fact, (opportunistic) pathogens can be tracked and monitored across many hundreds of urban metagenomes. However, while more effort is needed to profile strains of currently uncharacterized species, this work poses the basis for high-resolution analyses of microbiomes sampled in city and mass transportation environments.

Reviewers

This article was reviewed by Alexandra Bettina Graf, Daniel Huson and Trevor Cickovski.
  相似文献   
83.
84.
Photon-counting sensors based on standard complementary metal-oxide-semiconductor single-photon avalanche diodes (SPADs) represent an emerging class of imagers that enable the counting and/or timing of single photons at zero readout noise (better than high-speed electron-multiplying charge-coupling devices) and over large arrays. They have seen substantial progress over the last 15 years, increasing their spatial resolution, timing accuracy, and sensitivity while reducing spurious signals such as afterpulsing and dark counts. They are increasingly being applied for time-resolved applications with the added advantage of enabling real-time options such as autocorrelation. We report in this study on the use of such a state-of-the-art 512 × 128 SPAD array, capable of a time resolution of 10?5–10?6 s for full frames while retaining acceptable photosensitivity thanks to the use of dedicated microlenses, in a selective plane illumination-fluorescence correlation spectroscopy setup. The latter allows us to perform thousands of fluorescence-correlation spectroscopy measurements simultaneously in a two-dimensional slice of the sample. This high-speed SPAD imager enables the measurement of molecular motion of small fluorescent particles such as single chemical dye molecules. Inhomogeneities in the molecular detection efficiency were compensated for by means of a global fit of the auto- and cross-correlation curves, which also made a calibration-free measurement of various samples possible. The afterpulsing effect could also be mitigated, making the measurement of the diffusion of Alexa-488 possible, and the overall result quality was further improved by spatial binning. The particle concentrations in the focus tend to be overestimated by a factor of 1.7 compared to a confocal setup; a calibration is thus required if absolute concentrations need to be measured. The first high-speed selective plane illumination-fluorescence correlation spectroscopy in vivo measurements to our knowledge were also recorded: although two-component fit models could not be employed because of noise, the diffusion of eGFP oligomers in HeLa cells could be measured. Sensitivity and noise will be further improved in the next generation of SPAD-based widefield sensors, which are currently under testing.  相似文献   
85.
A chlorophyll fluorescence technique was applied to anin situ study on the effects of low temperature and high light stresses onSpirulina cultures grown outdoors in controlled tubular photobioreactors at high (1.1 g L–1) and low (0.44 g L–1) biomass concentrations. Diurnal changes in PSII photochemistry (F v/F m) after 15 min of darkness, or in the light (dF/F m), and non-photochemical (qN) quenching were measured using a portable, pulse-amplitude-modulated fluorometer. The depression of theF v/F m ratio ofSpirulina cultures grown outdoors at 25°C (i.e. 10°C below optimum for growth) and 0.44 g L–1, reached 30% at the middle of the day. At the same time of the day thedF/F m ratio showed a reduction of up to 52%. The depression of bothF v/F m anddF/F m was lower in the cultures grown at 1.1 g L–1. Photoinhibition reduced the daily productivity of the culture grown at 0.44 g L–1 and 25°C by 33% with respect to that grown at 35°C. Changes in the growth yields of the cultures grown under different temperatures and growth rates correlate well with analogous changes in photon yield (dF/F m). Simple measurements of photochemical yield (F v/F m) can be used to test the physiological status ofSpirulina cultures. The results indicate that the saturating pulse fluorescence technique, when usedin situ, is a powerful tool for assessment of the photosynthetic characteristics of outdoor cultures ofSpirulina.  相似文献   
86.
Several studies have shown the potential use of Ilex paraguariensis in developing products with the aim to protect biological systems against oxidative stress-mediated damages. In the same way, technological studies have demonstrated the feasibility of obtaining dry products, by spray-drying process, from aqueous extracts of I. paraguariensis in laboratory. The present work was designed to develop pellets by extrusion/spheronization process, from an I. paraguariensis spray-dried powder. The pellets were characterized with respect to their chemical, physical, and technological properties, and the thermal and the photostability of the main polyphenol constituents were investigated. The pellets exhibited adequate size, shape, and high process yield (78.7%), as well as a good recovery of the total polyphenols (>95%) and a good dissolution in water (89.44 to 100.05%). The polyphenols were stable against light when conditioned in amber glass bottles; unstable against heat when the samples were conditioned either in open glass bottles or in hermetically sealed glass bottles and demonstrated to be hygroscopic and sensible to the temperature, especially when stored in permeable flasks. These findings pointed to the relevance of reducing the residual moisture content of pellets as well as of conditioning them in opaque humidity tight packages under low temperatures. The feasibility of obtaining pellets from an I. paraguariensis spray-dried powder using extrusion/spheronization technique was, for the first time, demonstrated. This finding represents a novelty for the herbal products in both pharmaceutical and food fields.  相似文献   
87.
88.
The development of bone metastases in cancer can be monitored easily using three markers: 24 h urinary hydroxyproline excretion (HOP) (an index of osteoclastic activity), serum alkaline phosphatase (Alk.Ph.) (an index of osteoblastic activity) and 24 h whole body retention of 99mTc-methylene diphosphonate (WBR%) (an index of bone turnover). To evaluate the effectiveness of this group of bone tumor markers in breast cancer we compared it with the following group of three markers which are commonly used in the monitoring of breast cancer and in the follow-up of advanced disease with or without bone metastases: carcinoembryonic antigen (CEA), tissue polypeptide antigen (TPA) and breast carcinoma antigen (CA 15/3). In 48 patients with bone metastases CEA, TPA and CA 15/3 were shown to be sensitive (79%, 85%, 90% respectively), while HOP, Alk.Ph. and WBR%, which are commonly accepted as reliable markers of bone activity, showed a lower sensitivity (67%, 46%, 75% respectively). These results may be explained by the lack of osteoclastic or osteoblastic (or both) activity at the time of diagnosis. This explanation is supported by the fact that the bone markers HOP, Alk.Ph. and WBR% were found to be more sensitive than the others in the subsequent follow-up study. We conclude that in our study, CEA, TPA and CA 15/3 are at first more sensitive than Alk.Ph., HOP and WBR% but during the follow-up Alk.Ph., HOP and WBR% are possibly both more specific and more sensitive.  相似文献   
89.
Riassunto

L'A. illustra la differenziazione di speciali noduli di elementi lignificati nel tessuto di cicatrizzazione, che si forma nell'innesto a becco di luccio del gelso, e mette in rilievo come tali elementi presentino il carattere degli elementi di trasfusione classici delle Gimnosperme, da cui però si differenziano per perforazioni porose sulle membrane. Questo tessuto di trasfusione è da considerarsi come la degenerazione di un legno eteroxilo.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号