首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   7篇
  2001年   1篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1960年   2篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
41.
The metabolic syndrome comprises a cluster of metabolic anomalies including insulin resistance, abdominal obesity, dyslipidemia, and hypertension. Previous studies suggest that impaired dopamine D2 receptor (D2R) signaling is involved in its pathogenesis. We studied the acute effects of bromocriptine (a D2R agonist) on energy metabolism in obese women; body weight and caloric intake remained constant. Eighteen healthy, obese women (BMI 33.2 +/- 0.6 kg/m(2), mean age 37.5 +/- 1.7, range 22-51 yr) were studied twice in the follicular phase of their menstrual cycle in a prospective, single-blind, crossover design. Subjects received both placebo (P; always first occasion) and bromocriptine (B; always second occasion) on separate occasions for 8 days. At each occasion blood glucose and insulin were assessed every 10 min for 24 h, and circadian plasma free fatty acid (FFA) and triglyceride (TG) levels were measured hourly. Fuel oxidation was determined by indirect calorimetry. Body weight and composition were not affected by the drug. Mean 24-h blood glucose (P < 0.01) and insulin (P < 0.01) were significantly reduced by bromocriptine, whereas mean 24 h FFA levels were increased (P < 0.01), suggesting that lipolysis was stimulated. Bromocriptine increased oxygen consumption (P = 0.03) and resting energy expenditure (by 50 kcal/day, P = 0.03). Systolic blood pressure was significantly reduced by bromocriptine. Thus these results imply that short-term bromocriptine treatment ameliorates various components of the metabolic syndrome while it shifts energy balance away from lipogenesis in obese humans.  相似文献   
42.
In human hematopoietic malignancies, RAS mutations are frequently observed. Yet, little is known about signal transduction pathways that mediate KRAS-induced phenotypes in human CD34(+) stem/progenitor cells. When cultured on bone marrow stroma, we observed that KRAS(G12V)-transduced cord blood (CB) CD34(+) cells displayed a strong proliferative advantage over control cells, which coincided with increased early cobblestone (CAFC) formation and induction of myelomonocytic differentiation. However, the KRAS(G12V)-induced proliferative advantage was transient. By week three no progenitors remained in KRAS(G12V)-transduced cultures and cells were all terminally differentiated into monocytes/macrophages. In line with these results, LTC-IC frequencies were strongly reduced. Both the ERK and p38 MAPK pathways, but not JNK, were activated by KRAS(G12V) and we observed that proliferation and CAFC formation were mediated via ERK, while differentiation was predominantly mediated via p38. Interestingly, we observed that KRAS(G12V)-induced proliferation and CAFC formation, but not differentiation, were largely mediated via secreted factors, since these phenotypes could be recapitulated by treating non-transduced cells with conditioned medium harvested from KRAS(G12V)-transduced cultures. Multiplex cytokine arrays and genome-wide gene expression profiling were performed to gain further insight into the mechanisms by which oncogenic KRAS(G12V) can contribute to the process of leukemic transformation. Thus, angiopoietin-like 6 (ANGPTL6) was identified as an important factor in the KRAS(G12V) secretome that enhanced proliferation of human CB CD34(+) cells.  相似文献   
43.
44.
The Neolithic transition has been widely debated particularly regarding the extent to which this revolution implied a demographic expansion from the Near East. We attempted to shed some light on this process in northeastern Iberia by combining ancient DNA (aDNA) data from Early Neolithic settlers and published DNA data from Middle Neolithic and modern samples from the same region. We successfully extracted and amplified mitochondrial DNA from 13 human specimens, found at three archaeological sites dated back to the Cardial culture in the Early Neolithic (Can Sadurní and Chaves) and to the Late Early Neolithic (Sant Pau del Camp). We found that haplogroups with a low frequency in modern populations-N* and X1-are found at higher frequencies in our Early Neolithic population (~31%). Genetic differentiation between Early and Middle Neolithic populations was significant (F(ST) ~0.13, P<10(-5)), suggesting that genetic drift played an important role at this time. To improve our understanding of the Neolithic demographic processes, we used a Bayesian coalescence-based simulation approach to identify the most likely of three demographic scenarios that might explain the genetic data. The three scenarios were chosen to reflect archaeological knowledge and previous genetic studies using similar inferential approaches. We found that models that ignore population structure, as previously used in aDNA studies, are unlikely to explain the data. Our results are compatible with a pioneer colonization of northeastern Iberia at the Early Neolithic characterized by the arrival of small genetically distinctive groups, showing cultural and genetic connections with the Near East.  相似文献   
45.
Pericardial fat accumulation has been associated with an increased cardiovascular risk. A very low calorie diet (VLCD) improves the cardiovascular risk profile in patients with type 2 diabetes mellitus (T2DM), by improving the metabolic profile, heart function, and triglyceride (TG) stores in (non)adipose tissues. However, long-term effects of a VLCD on pericardial fat volume and tissue-specific TG accumulation have not been documented. The aim of this study was therefore to assess the effects of a 16-week VLCD and of subsequent 14 months follow-up on a regular diet on pericardial fat in relation to other TG stores in obese T2DM patients. We included 14 obese patients with insulin-treated T2DM (mean ± s.e.m.: age 53 ± 2 years; BMI 35 ± 1 kg/m(2)). Pericardial fat and other (non)adipose TG stores were measured using magnetic resonance (MR) imaging and proton spectroscopy before and after a 16-week VLCD and after a 14-month follow-up without dietary interventions. A 16-week VLCD reduced body weight, pericardial fat, hepatic TG content, visceral and subcutaneous abdominal fat volumes to 78, 83, 16, 40, and 53% of baseline values respectively, (all P < 0.05). After an additional 14 months of follow-up on a regular diet, the reduction in pericardial fat volume sustained, despite a substantial regain in body weight, visceral abdominal fat, and hepatic TG content (respectively 90, 83 and 73% of baseline values). In conclusion, VLCD-induced weight loss in obese T2DM patients is accompanied by a substantial decrease in pericardial fat volume, which is sustained even after subsequent weight regain.  相似文献   
46.
Simple sequence repeats (SSRs) are indel mutational hotspots in genomes. In prokaryotes, SSR loci can cause phase variation, a microbial survival strategy that relies on stochastic, reversible on-off switching of gene activity. By analyzing multiple strains of 42 fully sequenced prokaryotic species, we measure the relative variability and density distribution of SSRs in coding regions. We demonstrate that repeat type strongly influences indel mutation rates, and that the most mutable types are most strongly avoided across genomes. We thoroughly characterize SSR density and variability as a function of N→C position along protein sequences. Using codon-shuffling algorithms that preserve amino acid sequence, we assess evolutionary pressures on SSRs. We find that coding sequences suppress repeats in the middle of proteins, and enrich repeats near termini, yielding U-shaped SSR density curves. We show that for many species this characteristic shape can be attributed to purely biophysical constraints of protein structure. In multiple cases, however, particularly in certain pathogenic bacteria, we observe over enrichment of SSRs near protein N-termini significantly beyond expectation based on structural constraints. This increases the probability that frameshifts result in non-functional proteins, revealing that these species may evolutionarily tune SSR positions in coding regions to facilitate phase variation.  相似文献   
47.
Microbial pathogens and viruses can often maintain sufficient population diversity to evade a wide range of host immune responses. However, when populations experience bottlenecks, as occurs frequently during initiation of new infections, pathogens require specialized mechanisms to regenerate diversity. We address the evolution of such mechanisms, known as stochastic phenotype switches, which are prevalent in pathogenic bacteria. We analyze a model of pathogen diversification in a changing host environment that accounts for selective bottlenecks, wherein different phenotypes have distinct transmission probabilities between hosts. We show that under stringent bottlenecks, such that only one phenotype can initiate new infections, there exists a threshold stochastic switching rate below which all pathogen lineages go extinct, and above which survival is a near certainty. We determine how quickly stochastic switching rates can evolve by computing a fitness landscape for the evolutionary dynamics of switching rates, and analyzing its dependence on both the stringency of bottlenecks and the duration of within‐host growth periods. We show that increasing the stringency of bottlenecks or decreasing the period of growth results in faster adaptation of switching rates. Our model provides strong theoretical evidence that bottlenecks play a critical role in accelerating the evolutionary dynamics of pathogens.  相似文献   
48.
49.
The life history, reproductive ecology and habitat utilization of the Itasenpara (deepbody) bitterling Acheilognathus longipinnis were investigated in a lowland segment of the Moo River in Toyama Prefecture, central Honshu, Japan. Analysis of 1285 individuals revealed that the study population comprised a single size class, an age at maturation of 3 months and a life span of 1 year. On the basis of the growth pattern, the life cycle was divided into two stages: the juvenile stage, characterized by rapid growth, and the adult stage at which growth ceased. Spawning by A. longipinnis was recorded between early September and late October. Female A. longipinnis in the 0+ year age class began to mature when they reached a standard length (LS) of 56·4 mm. Mature females had a large clutch size (maximum 273 eggs) and deposited highly adhesive and relatively large eggs (2·55 mm3; major axis, 3·12 mm; minor axis, 1·22 mm) via a short ovipositor (mean length, 21·5 mm) into freshwater mussels. The embryos remained in the gill cavities of the freshwater mussels (used as a spawning substratum) and emerged as juveniles (LS, 9 mm). Habitat utilization during spawning was analysed using a generalized linear model. The best‐fit model showed that three environmental factors (freshwater mussel availability, water depth and vegetation cover) were important variables for habitat utilization by A. longipinnis. Shallow areas (water depth, 250–330 mm) created for rice paddy management and areas with an abundance of cover were particularly effective for predator avoidance. These results suggest that maintenance of water level fluctuations corresponding with rice cultivation and the abundance of vegetation on the river bank (particularly avoidance of concrete revetments) is essential for conservation of this species under current practices for rice cultivation in Japan.  相似文献   
50.
Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号