首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1593篇
  免费   106篇
  国内免费   3篇
  1702篇
  2023年   7篇
  2022年   12篇
  2021年   20篇
  2020年   13篇
  2019年   10篇
  2018年   20篇
  2017年   24篇
  2016年   37篇
  2015年   65篇
  2014年   61篇
  2013年   82篇
  2012年   96篇
  2011年   116篇
  2010年   70篇
  2009年   57篇
  2008年   91篇
  2007年   73篇
  2006年   71篇
  2005年   73篇
  2004年   58篇
  2003年   85篇
  2002年   83篇
  2001年   10篇
  2000年   14篇
  1999年   18篇
  1998年   24篇
  1997年   19篇
  1996年   17篇
  1995年   17篇
  1994年   18篇
  1993年   15篇
  1992年   12篇
  1991年   16篇
  1990年   7篇
  1989年   20篇
  1988年   14篇
  1987年   10篇
  1986年   13篇
  1985年   10篇
  1984年   11篇
  1983年   11篇
  1982年   10篇
  1981年   16篇
  1979年   8篇
  1978年   9篇
  1977年   7篇
  1975年   10篇
  1973年   8篇
  1970年   8篇
  1965年   8篇
排序方式: 共有1702条查询结果,搜索用时 15 毫秒
71.
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36–54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351–727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia.  相似文献   
72.
Summary The unusual amino acid hypusine [N -(4-amino-2-hydroxybutyl)lysine] is a unique component of one cellular protein, eukaryotic translation initiation factor 5A (eIF-5A, old terminology, eIF-4D). It is formed posttranslationally and exclusively in this protein in two consecutive enzymatic reactions, (i) modification of a single lysine residue of the eIF-5A precursor protein by the transfer of the 4-aminobutyl moiety of the polyamine spermidine to its-amino group to form the intermediate, deoxyhypusine [N -(4-aminobutyl)lysine] and (ii) subsequent hydroxylation of this intermediate to form hypusine. The amino acid sequences surrounding the hypusine residue are strictly conserved in all eukaryotic species examined, suggesting the fundamental importance of this amino acid throughout evolution. Hypusine is required for the activity of eIF-5Ain vitro. There is strong evidence that hypusine and eIF-5A are vital for eukaryotic cell proliferation. Inactivation of both of the eIF-5A genes is lethal in yeast and the hypusine modification appears to be a requirement for yeast survival (Schnier et al., 1991 [Mol Cell Biol 11: 3105–3114]; Wöhl et al., 1993 [Mol Gen Genet 241: 305–311]). Furthermore, inhibitors of either of the hypusine biosynthetic enzymes, deoxyhypusine synthase or deoxyhypusine hydroxylase, exert strong anti-proliferative effects in mammalian cells, including many human cancer cell lines. These inhibitors hold potential as a new class of anticancer agents, targeting one specific eukaryotic cellular reaction, hypusine biosynthesis.  相似文献   
73.
Alzheimer’s disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-β (Aβ) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.  相似文献   
74.
In the course of a program aimed at synthesizing novel, potent NK-1 tachykinin receptor antagonists, we developed upon a bioactive model by comparing the low energy structures of a series of peptide and nonpeptide Substance P antagonists. The comparison was based on the super imposition of the aromatic rings, assuming that the rest of the molecule behaves predominantly as a template to arrange the key aromatic groups in the right spatial position. A series of 2-aminocyclohexane carboxylic acid analogues were then selected as the best templates for reproducing the postulated bioactive structure, leading to several pseudo-peptides with interesting biological activity. According to the molecular modeling, these compounds exhibit a neat parallel facing of the indolyl and naphthyl groups at about 3 Å distance. Ultraviolet absorption and steady state fluorescence measurements support this conclusion, showing a linear correlation between the spectral properties and the binding affinity of these analogues. Stacking of the indole ring with naphthalene gives rise to a complex characterized by a well-defined molar extinction coefficient. Consistently, steady state and lifetime fluorescence measurements suggest that the quenching process is ascribable to ground-state interactions between the chromophores. Implications of the π stacking propensity of aromatic groups in the biological activity of the compounds examined are briefly discussed. © 1995 John Wiley & Sons, Inc.  相似文献   
75.

Background

Parenchymal transection represents a crucial step during liver surgery and many different techniques have been described so far. Stapler resection is supposed to be faster than CUSA resection. However, whether speed impacts on the inflammatory response in patients undergoing liver resection (LR) remains unclear.

Materials and Methods

This is a randomized controlled trial including 40 patients undergoing anatomical LR. Primary endpoint was transection speed (cm2/min). Secondary endpoints included the perioperative change of pro- and anti-inflammatory cytokines, overall surgery duration, length of hospital stay, morbidity and mortality.

Results

Mean transection speed was significantly higher in patients undergoing stapler hepatectomy compared to CUSA resection (CUSA: 1 (0.4) cm2/min vs. Stapler: 10.8 (6.1) cm2/min; p<0.0001). Analyzing the impact of surgery duration on inflammatory response revealed a significant correlation between IL-6 levels measured at the end of surgery and the overall length of surgery (p<0.0001, r = 0.6188). Patients undergoing CUSA LR had significantly higher increase of interleukin-6 (IL-6) after parenchymal transection compared to patients with stapler hepatectomy in the portal and hepatic veins, respectively (p = 0.028; p = 0.044). C-reactive protein levels on the first post-operative day were significantly lower in the stapler cohort (p = 0.010). There was a trend towards a reduced overall surgery time in patients with stapler LR, especially in the subgroup of patients undergoing minor hepatectomies (p = 0.020).

Conclusions

Liver resection using staplers is fast, safe and suggests a diminished inflammatory response probably due to a decreased parenchymal transection time.

Trial Registration

ClinicalTrials.gov NCT01785212  相似文献   
76.
77.
Phospholipid lining, present at the respiratory mucus-mucosa interface, may have an important role in the protective function of the airways by its abhesive properties and may also facilitate mucus transport. To mimic respiratory mucus-mucosa interface, monolayers of three different forms of phosphatidylglycerol (PG) have been deposited on glass slides by the Langmuir-Blodgett technique. Mucus adhesion and clearance by cough of mucus on these PG-coated or noncoated surfaces have been analyzed and compared, using frog respiratory mucus as "normal" mucus. Among the three PG types studied, the phosphatidylglycerol distearoyl, which is the phospholipid with the longest saturated fatty acid chain, was found to significantly improve the mucus cough clearance by decreasing the mucus work of adhesion compared with the noncoated surfaces. On the other hand, phosphatidylglycerol dipalmitoyl did not improve mucus cough clearance although it decreased mucus adhesion, and phosphatidylglycerol dioleyl did not improve either mucus cough clearance or mucus adhesion.  相似文献   
78.
The epidermal growth factor receptor (EGF-R) plays an important role in development and cell differentiation, and homologues of EGF-R have been identified in a broad range of vertebrate and invertebrate organisms. This work concerns the functional characterization of SER, the EGF-R-like molecule previously identified in the helminth parasite Schistosoma mansoni. Transactivation assays performed in epithelial Madin-Darby canine kidney cells co-transfected with SER and a Ras-responsive reporter vector indicated that SER was able to trigger a Ras/ERK pathway in response to human epidermal growth factor (EGF). These results were confirmed in Xenopus oocytes showing that human EGF induced meiosis reinitiation characterized by germinal vesicle breakdown in SER-expressing oocytes. Germinal vesicle breakdown induced by EGF was dependent on receptor kinase activity and shown to be associated with phosphorylation of SER and of downstream ERK proteins. (125)I-EGF binding experiments performed on SER-expressing oocytes revealed high affinity (2.9 x 10(-9) M) of the schistosome receptor for human EGF. Phosphorylation of the native SER protein present in S. mansoni membranes was also shown to occur upon binding of human EGF. These data demonstrate the ability of the SER schistosome receptor to be activated by vertebrate EGF ligands as well as to activate the classical ERK pathway downstream, indicating the conservation of EGF-R function in S. mansoni. Moreover, human EGF was shown to increase protein and DNA synthesis as well as protein phosphorylation in parasites, supporting the hypothesis that host EGF could regulate schistosome development. The possible role of SER as a receptor for host EGF peptides and its implication in host-parasite signaling and parasite development are discussed.  相似文献   
79.
Summary Murine monoclonal antibodies (MCAs) against human ovarian tumor associated antigen NB/70K have been prepared. One of these MCAs, NB12123, was chosen for the development of a radioimmunoassay for measuring serum NB/70K levels. In this assay, the average NB/70K level in 75 normal, healthy controls was 11.9 activity units (AU) with an SD of 14.9 AU. The normal cut off value for this assay was set at 45 AU (mean +2 SD). 24 of 46 (52%) ovarian cancer patients, 7 of 18 (39%) patients with benign ovarian cysts or tumors and 3 of 85 (4%) control samples had elevated serum NB/70K levels. Comparison of NB/70K levels measured in the NB12123 assay with levels measured in an assay using a polyclonal antiNB/70K previously developed in our laboratory [13] indicated that although both assays had approximately the same percentage of positive ovarian cancer patient samples, there appeared to be no correlation between the absolute NB/70K levels measured by the two assays. The rank of ovarian cancer patient samples was also different for the two assays. Also, almost 40% of patients with benign ovarian cysts and tumors had elevated serum NB/70K levels as measured by the NB12123 assay as compared to 0% for the polyclonal assay. Reciprocal cross-blocking experiments, absorption studies, and immune precipitate analysis indicated that both the monoclonal NB12123 assay and the polyclonal antiNB/70K assay measured the same population of NB/70K molecules. However, the polyclonal antibody recognizes epitopes in addition to that recognized by NB12123. Taken together, these results suggest that the epitope recognized by NB12123 is not as specific for malignant ovarian tumors as the epitope(s) recognized by polyclonal antiNB/70K and/or that more than the one epitope detected by the MCA is responsible for the specificity for ovarian cancer of the polyclonal NB/70K assay. In spite of this, the greater sensitivity and range of the monoclonal NB12123 assay make it possible to monitor serum NB/70K levels in ovarian cancer patients. In four patients examined, the fluctuating serum NB/70K levels appeared to correlate well with clinical statusSupported in part by ACS # PDT 231 and a grant from the Elsa U. Pardee Foundation  相似文献   
80.
Salmonella enterica degrades 1,2-propanediol (1,2-PD) in a coenzyme B(12)-dependent manner. Previous enzymatic assays of crude cell extracts indicated that a phosphotransacylase (PTAC) was needed for this process, but the enzyme involved was not identified. Here, we show that the pduL gene encodes an evolutionarily distinct PTAC used for 1,2-PD degradation. Growth tests showed that pduL mutants were unable to ferment 1,2-PD and were also impaired for aerobic growth on this compound. Enzyme assays showed that cell extracts from a pduL mutant lacked measurable PTAC activity in a background that also carried a pta mutation (the pta gene was previously shown to encode a PTAC enzyme). Ectopic expression of pduL corrected the growth defects of a pta mutant. PduL fused to eight C-terminal histidine residues (PduL-His(8)) was purified, and its kinetic constants were determined: the V(max) was 51.7 +/- 7.6 micromol min(-1) mg(-1), and the K(m) values for propionyl-PO(4)(2-) and acetyl-PO(4)(2-) were 0.61 and 0.97 mM, respectively. Sequence analyses showed that PduL is unrelated in amino acid sequence to known PTAC enzymes and that PduL homologues are distributed among at least 49 bacterial species but are absent from the Archaea and Eukarya.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号