首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1630篇
  免费   109篇
  国内免费   3篇
  1742篇
  2023年   7篇
  2022年   12篇
  2021年   20篇
  2020年   15篇
  2019年   11篇
  2018年   20篇
  2017年   26篇
  2016年   38篇
  2015年   69篇
  2014年   61篇
  2013年   86篇
  2012年   102篇
  2011年   123篇
  2010年   76篇
  2009年   62篇
  2008年   97篇
  2007年   77篇
  2006年   75篇
  2005年   75篇
  2004年   62篇
  2003年   87篇
  2002年   87篇
  2001年   12篇
  2000年   8篇
  1999年   20篇
  1998年   24篇
  1997年   17篇
  1996年   19篇
  1995年   18篇
  1994年   20篇
  1993年   17篇
  1992年   10篇
  1991年   12篇
  1989年   15篇
  1988年   16篇
  1987年   8篇
  1986年   11篇
  1985年   9篇
  1984年   10篇
  1983年   11篇
  1982年   9篇
  1981年   16篇
  1979年   8篇
  1978年   9篇
  1977年   7篇
  1975年   9篇
  1973年   7篇
  1970年   7篇
  1965年   8篇
  1963年   6篇
排序方式: 共有1742条查询结果,搜索用时 15 毫秒
91.
Leukemia inhibitory factor (LIF) is a multifunctional glycoprotein that displays multiple biological activities in different cell types, but to date there has been no report on its expression in the normal mammary gland. In this study we found that LIF is expressed at low but detectable levels in postpubertal, adult virgin, and pregnant mouse mammary glands. However, LIF expression drops after parturition to become almost undetectable in lactating glands. Interestingly, LIF expression shows a steep increase shortly after weaning that is maintained for the following 3 days. During this period, known as the first stage of mammary gland involution, the lack of suckling induces local factors that cause extensive epithelial cell death. It has been shown that Stat3 is the main factor in signaling the initiation of apoptosis, but the mechanism of its activation remains unclear. Herein, we show that LIF expression in the gland is induced by milk stasis and not by the decrease of circulating lactogenic hormones after weaning. Implantation of LIF containing pellets in lactating glands results in a significant increase in epithelium apoptosis. In addition, this treatment also induces Stat3 phosphorylation. We conclude that LIF regulated expression in the mouse mammary gland may play a relevant role during the first stage of mammary gland involution. Our results also show that LIF-induced mammary epithelium apoptosis could be mediated, at least partially, by Stat3 activation.  相似文献   
92.
Grb14 belongs to the Grb7 family of adapter proteins and was identified as a negative regulator of insulin signal transduction. Its inhibitory effect on the insulin receptor kinase activity is controlled by a newly discovered domain called PIR. To investigate the biochemical and biophysical characteristics of this new domain, we cloned and purified recombinant PIR-SH2, PIR, and SH2 domains. The isolated PIR and PIR-SH2 domains were physiologically active and inhibited insulin-induced reinitiation of meiosis in the Xenopus oocytes system. However, NMR experiments on (15)N-labelled PIR revealed that it did not present secondary structure. These results suggest that the PIR domain belongs to the growing family of intrinsically unstructured proteins.  相似文献   
93.
Malloff CA  Fernandez RC  Dullaghan EM  Stokes RW  Lam WL 《Gene》2002,292(1-2):205-211
Three highly mutable loci of the wall-less pathogens Mycoplasma bovis, Mycoplasma pulmonis and Mycoplasma agalactiae undergo high-frequency genomic rearrangements and generate extensive antigenic variation of major surface lipoproteins. Adjacent to each locus, an open reading frame exists as a single chromosomal copy and is predicted to encode a site-specific DNA recombinase exhibiting high homology to the recombinases XerD of Escherichia coli and CodV of Bacillus subtilis. Each of the mycoplasmal proteins are members of the lambda integrase family of tyrosine site-specific recombinases and likely mediates site-specific DNA inversions observed within the adjacent, variable loci.  相似文献   
94.
Arylamine N-acetyltransferases which acetylate and inactivate isoniazid, an anti-tubercular drug, are found in mycobacteria including Mycobacterium smegmatis and Mycobacterium tuberculosis. We have solved the structure of arylamine N-acetyltransferase from M. smegmatis at a resolution of 1.7 A as a model for the highly homologous NAT from M. tuberculosis. The fold closely resembles that of NAT from Salmonella typhimurium, with a common catalytic triad and domain structure that is similar to certain cysteine proteases. The detailed geometry of the catalytic triad is typical of enzymes which use primary alcohols or thiols as activated nucleophiles. Thermal mobility and structural variations identify parts of NAT which might undergo conformational changes during catalysis. Sequence conservation among eubacterial NATs is restricted to structural residues of the protein core, as well as the active site and a hinge that connects the first two domains of the NAT structure. The structure of M. smegmatis NAT provides a template for modelling the structure of the M. tuberculosis enzyme and for structure-based ligand design as an approach to designing anti-TB drugs.  相似文献   
95.
Ophioluxin, a potent platelet agonist, was purified from the venom of Ophiophagus hannah (King cobra). Under nonreducing conditions it has a mass of 85 kDa, similar to convulxin, and on reduction gives two subunits with masses of 16 and 17 kDa, slightly larger than those of convulxin. The N-terminal sequences of both subunits are very similar to those of convulxin and other C-type lectins. Ophioluxin induces a pattern of tyrosine-phosphorylated proteins in platelets like that caused by convulxin, when using appropriate concentrations based on aggregation response, because it is about 2-4 times more powerful as agonist than the latter. Ophioluxin and convulxin induce [Ca(2+)](i) elevation both in platelets and in Dami megakaryocytic cells, and each of these C-type lectins desensitizes responses to the other. Convulxin agglutinates fixed platelets at 2 microg/ml, whereas ophioluxin does not, even at 80 microg/ml. Ophioluxin resembles convulxin more than echicetin or alboaggregin B because polyclonal anti-ophioluxin antibodies recognize both ophioluxin and convulxin, but not echicetin, and platelets adhere to and spread on ophioluxin- or convulxin-precoated surfaces in the same way that is clearly different from their behavior on an alboaggregin B surface. Immobilized ophioluxin was used to isolate the glycoprotein VI-Fcgamma complex from resting platelets, which also contained Fyn, Lyn, Syk, LAT, and SLP76. Ophioluxin is the first multiheterodimeric, convulxin-like snake C-type lectin, as well as the first platelet agonist, to be described from the Elapidae snake family.  相似文献   
96.
Salmonella enterica forms polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. These organelles are thought to consist of a proteinaceous shell that encases coenzyme B(12)-dependent diol dehydratase and perhaps other enzymes involved in 1,2-propanediol degradation. The function of these organelles is unknown, and no detailed studies of their structure have been reported. Genes needed for organelle formation and for 1,2-propanediol degradation are located at the 1,2-propanediol utilization (pdu) locus, but the specific genes involved in organelle formation have not been identified. Here, we show that the pduA gene encodes a shell protein required for the formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. A His(6)-PduA fusion protein was purified from a recombinant Escherichia coli strain and used for the preparation of polyclonal antibodies. The anti-PduA antibodies obtained were partially purified by a subtraction procedure and used to demonstrate that the PduA protein localized to the shell of the polyhedral organelles. In addition, electron microscopy studies established that strains with nonpolar pduA mutations were unable to form organelles. These results show that the pduA gene is essential for organelle formation and indicate that the PduA protein is a structural component of the shell of these organelles. Physiological studies of nonpolar pduA mutants were also conducted. Such mutants grew similarly to the wild-type strain at low concentrations of 1,2-propanediol but exhibited a period of interrupted growth in the presence of higher concentrations of this growth substrate. Growth tests also showed that a nonpolar pduA deletion mutant grew faster than the wild-type strain at low vitamin B(12) concentrations. These results suggest that the polyhedral organelles formed by S. enterica during growth on 1,2-propanediol are not involved in the concentration of 1,2-propanediol or coenzyme B(12), but are consistent with the hypothesis that these organelles moderate aldehyde production to minimize toxicity.  相似文献   
97.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a key enzyme in the anaerobic metabolism of aromatic compounds catalyzing the ATP-driven reductive dearomatization of benzoyl-CoA. The enzyme from Thauera aromatica uses a reduced 2[4Fe-4S] ferredoxin as electron donor. In this work, we identified 2-oxoglutarate:ferredoxin oxidoreductase (KGOR) as the ferredoxin reducing enzyme. KGOR activity was increased 10- to 50-fold in T. aromatica cells grown under denitrifying conditions on an aromatic substrate compared to that of cells grown on nonaromatic substrates. The enzyme was purified from soluble extracts by a 60-fold enrichment with a specific activity of 4.8 micromol min(-1) mg(-1). The native enzyme had a molecular mass of 200 +/- 20 kDa (mean +/- standard deviation) and consisted of two subunits with molecular masses of 66 and 34 kDa, suggesting an (alphabeta)(2) composition. The UV/visible spectrum was characteristic for an iron-sulfur protein; the enzyme contained 8.3 +/- 0.5 mol of Fe, 7.2 +/- 0.5 mol of acid-labile sulfur, and 1.6 +/- 0.2 mol of thiamine diphosphate (TPP) per mol of protein. The high specificity for 2-oxoglutarate and the low K(m) for ferredoxin ( approximately 10 microM) indicated that both are the in vivo substrates of the enzyme. KGOR catalyzed the isotope exchange between (14)CO(2) and C(1) of 2-oxoglutarate, representing a typical reversible partial reaction of 2-oxoacid oxidoreductases. The two genes coding for the two subunits of KGOR were found adjacent to the gene cluster coding for enzymes and ferredoxin of the catabolic benzoyl-CoA pathway. Sequence comparisons with other 2-oxoacid oxidoreductases indicated that KGOR from T. aromatica belongs to the Halobacterium type of 2-oxoacid oxidoreductases, which lack a ferredoxin-like module which contains two additional [4Fe-4S](1+/2+) clusters/monomer. Using purified KGOR, ferredoxin, and benzoyl-CoA reductase, the 2-oxoglutarate-driven reduction of benzoyl-CoA was shown in vitro. This demonstrates that ferredoxin acts as an electron shuttle between the citric acid cycle and benzoyl-CoA reductase by coupling the oxidation of the end product of the benzoyl-CoA pathway, acetyl-CoA, to the reduction of the aromatic ring.  相似文献   
98.
The production and role of reactive oxygen species (ROS) in the expanding zone of maize (Zea mays) leaf blades were investigated. ROS release along the leaf blade was evaluated by embedding intact seedlings in 2',7'-dichlorofluorescein-containing agar and examining the distribution of 2',7'-dichlorofluorescein fluorescence along leaf 4, which was exposed by removing the outer leaves before embedding the seedling. Fluorescence was high in the expanding region, becoming practically non-detectable beyond 65 mm from the ligule, indicating high ROS production in the expansion zone. Segments obtained from the elongation zone of leaf 4 were used to assess the role of ROS in leaf elongation. The distribution of cerium perhydroxide deposits in electron micrographs indicated hydrogen peroxide (H(2)O(2)) presence in the apoplast. 2',7'-Dichlorofluorescein fluorescence and apoplastic H(2)O(2) accumulation were inhibited with diphenyleneiodonium (DPI), which also inhibited O*(2)(-) generation, suggesting a flavin-containing enzyme activity such as NADPH oxidase was involved in ROS production. Segments from the elongation zone incubated in water grew 8% in 2 h. KI treatments, which scavenged H(2)O(2) but did not inhibit O*(2)(-) production, did not modify growth. DPI significantly inhibited segment elongation, and the addition of H(2)O(2) (50 or 500 microM) to the incubation medium partially reverted the inhibition caused by DPI. These results indicate that a certain concentration of H(2)O(2) is necessary for leaf elongation, but it could not be distinguished whether H(2)O(2), or other ROS, are the actual active agents.  相似文献   
99.
The amiloride-sensitive epithelial Na(+) channel (ENaC) is essential for fluid clearance from the airways. An experimental animal model with a reduced expression of ENaC, the alpha-ENaC transgenic rescue mouse, is prone to develop edema under hypoxia exposure. This strongly suggests an involvement of ENaC in the pathogenesis of pulmonary edema. To investigate the pathogenesis of this type of edema, primary cultures of tracheal cells from these mice were studied in vitro. An ~60% reduction in baseline amiloride-sensitive Na(+) transport was observed, but the pharmacological characteristics and physiological regulation of the channel were similar to those observed in cells from wild-type mice. Aprotinin, an inhibitor of serine proteases, blocked 50-60% of the basal transepithelial current, hypoxia induced downregulation of Na(+) transport, and beta-adrenergic stimulation was effective to stimulate Na(+) transport after the hypoxia-induced decrease. When downregulation of ENaC activity (such as observed under hypoxia) is added to a low "constitutive" ENaC expression, the resulting reduced Na(+) transport rate may be insufficient for airway fluid clearance and favor pulmonary edema.  相似文献   
100.
Cystic fibrosis (CF) is the most common genetic autosomal recessive disease in caucasian north-american and european populations. The CF gene codes for a transmembrane glycoprotein called CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), a chloride channel which regulates the luminal secretion of chloride and the active ion and water transport in the airway epithelial cells. Mutations of the CF gene lead to a dysregulation of chloride and sodium channel associated to airway mucus dehydration, neutrophil-dominated airway inflammation and chronic infection responsible for the morbidity and mortality of CF patients. Although a high number of studies has been devoted to the CFTR pleiotropic functions, the chronology of the physiopathological events leading to the airway inflammation linked to mutations of the CF gene is still an open question. The issue of whether airway inflammation takes place before infection or is a consequence of infection during CF pathogenesis is still controversial. It has been recently reported that in broncho-alveolar lavages collected in CF infants, there is an increased level of interleukin IL-8 and abnormal low level of IL-10. The decreased IL-10 production has been confirmed in peripheral blood monocytes as well as in airway cell lines. Under basal conditions, the increased expression of the pro-inflammatory IL-8 cytokine has also been recently observed in the airway liquid secreted by CF na?ve humanized airway xenografts and in the supernatant culture of CF human airway epithelial cells. These results suggest that CFTR dysfunction may result in a constitutive pro-inflammatory vs anti-inflammatory imbalance in CF disease. Recent data from the literature suggest that the failure of chloride transport, the maturation defect and mistraffricking of mutated CFTR, lead to its accumulation in the endoplasmic reticulum and activation of NF-kappa B, responsible for the imbalance in the CF airway cell cytokine production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号