首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   12篇
  国内免费   6篇
  178篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   18篇
  2009年   62篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1978年   2篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1962年   2篇
  1952年   1篇
  1908年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
11.
A Auzéby  A Bogdan  Y Touitou 《Steroids》1991,56(1):33-36
17-Hydroxyprogesterone is a well-known precursor of androstenedione in adrenal biosynthesis. This study using sheep adrenal incubations demonstrates that 11-deoxycortisol, the precursor of cortisol synthesis, also can be a precursor of androstenedione. Indeed, our data show that androstenedione synthesis is negatively correlated to the synthesis of cortisol and cortisone. This fact allowed us to infer that this new pathway is closely related to the activity of the 11 beta-hydroxylase that is responsible for the synthesis of cortisol. Indeed, when the activity of this enzyme is impaired, 11-deoxycortisol follows the pathway that leads to androstenedione synthesis in the adrenals. This pathway could explain, at least in part, the marked increase of androstenedione observed in congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency.  相似文献   
12.
13.
Innate recognition of viruses is mediated by pattern recognition receptors (PRRs) triggering expression of antiviral interferons (IFNs) and proinflammatory cytokines. In mice, Toll-like receptor 2 (TLR2) and TLR9 as well as intracellular nucleotide-sensing pathways have been shown to recognize herpes simplex virus (HSV). Here, we describe how human primary macrophages recognize early HSV infection via intracellular pathways. A number of inflammatory cytokines, IFNs, and IFN-stimulated genes were upregulated after HSV infection. We show that early recognition of HSV and induction of IFNs and inflammatory cytokines are independent of TLR2 and TLR9, since inhibition of TLR2 using TLR2 neutralizing antibodies did not affect virus-induced responses and the macrophages were unresponsive to TLR9 stimulation. Instead, HSV recognition involves intracellular recognition systems, since induction of tumor necrosis factor alpha (TNF-α) and IFNs was dependent on virus entry and replication. Importantly, expression of IFNs was strongly inhibited by small interfering RNA (siRNA) knockdown of MAVS, but this MAVS-dependent IFN induction occurred independently of the recently discovered polymerase III (Pol III)/RIG-I DNA sensing system. In contrast, induction of TNF-α was largely independent of MAVS, suggesting that induction of inflammatory cytokines during HSV infection proceeds via a novel pathway. Transfection with ODN2006, a broad inhibitor of intracellular nucleotide recognition, revealed that nucleotide-sensing systems are employed to induce both IFNs and TNF-α. Finally, using siRNA knockdown, we found that MDA5, but not RIG-I, was the primary mediator of HSV recognition. Thus, innate recognition of HSV by human primary macrophages occurs via two distinct intracellular nucleotide-sensing pathways responsible for induction of IFNs and inflammatory cytokine expression, respectively.Virus recognition is essential for activation of innate antiviral immune defense and the subsequent induction of acquired immunity. Conserved pathogen motifs, termed pathogen-associated molecular patterns (PAMPs), are recognized by pattern recognition receptors (PRRs). Virus-recognizing PRRs include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and a number of intracellular DNA receptors. Several TLRs have been attributed roles in the recognition of virus. TLR2 and TLR4 recognize viral surface structures (3, 6, 18, 31), TLR3 recognizes double-stranded RNA (dsRNA) (2), and TLR7/8 and TLR9 function as signaling receptors for viral single-stranded RNA (ssRNA) (8, 11, 21) and CpG DNA (12, 20), respectively.Within the cell, cytoplasmic RLRs RIG-I and MDA5 both recognize accumulation of virus-derived dsRNA; in addition, RIG-I recognizes 5′-triphosphated RNA (14, 27, 39, 40). In addition to the RLRs, a number of receptors recognize foreign DNA. Presently, three DNA receptors have been identified: Z-DNA binding protein 1 (ZBP-1, or DAI) (36) and RNA polymerase III (Pol III) (1, 4) both mediate interferon (IFN) and cytokine production, whereas the AIM2 inflammasome is involved in caspase 1 activation in response to cytoplasmic dsDNA (13).Herpes simplex virus type 1 (HSV-1) and HSV-2 are two closely related human DNA viruses associated with a number of serious diseases, including orofacial infections, encephalitis, and genital infections (34). Macrophages play an important role in the first line of defense against viral infection via production of IFNs, cytokines, and chemokines that regulate the progress of the virus infection and activate and support appropriate defense mechanisms (9, 10, 24).TLR2, TLR3, and TLR9 have been identified as mediators of proinflammatory cytokine production during HSV infections. TLR2 mediates an overzealous inflammatory cytokine response following HSV-1 infection in mice, promoting mononuclear cell infiltration of the brain and development of encephalitis (18). TLR3 mediates type I and III IFN production in human fibroblasts (41). TLR9 recognizes genomic DNA from HSV-1 and HSV-2 in murine plasmacytoid dendritic cells (DCs) (17, 20) and mediates tumor necrosis factor alpha (TNF-α) and CCL5 production in murine macrophages (22). Both TLR2 and TLR9 mediate recognition of HSV and cytokine production in murine conventional DCs (35). HSV is recognized by an RLR/MAVS-dependent mechanism in murine macrophages and mouse embryonic fibroblasts (MEFs) (5, 29, 30). Recent data suggest that RNA Pol III mediates IFN production following HSV-1 infection and transfection with HSV-1 DNA in macrophage-like RAW 264.7 cells (4). Finally, murine L929 fibroblast-like cells are moderately inhibited in their ability to produce IFN after HSV-1 infection when ZBP-1 is knocked down (19, 36). Thus, several PRRs have been reported to recognize HSV-1 in murine cells and different cell lines, but the pathways responsible for sensing this virus in human primary macrophages and their impact on cytokine expression have not previously been described.In this work, we investigate the recognition pathways underlying HSV-induced cytokine and chemokine expression in human primary macrophages. We demonstrate that HSV-1-induced IFN and cytokine expression is independent of TLR2 and TLR9 but highly dependent on virus replication and intracellular nucleotide recognition systems. Specifically, induction of IFNs is dependent on MAVS and MDA5, whereas TNF-α is induced by a novel intracellular nucleotide-sensing system.  相似文献   
14.
15.
This paper presents the first example of a complete gene sequence coding for and expressing a biologically functional human tRNA methyltransferase: the hTRM1 gene product tRNA(m22G)dimethyltransferase. We isolated a human cDNA (1980 bp) made from placental mRNA coding for the full-length (659 amino acids) human TRM1 polypeptide. The sequence was fairly similar to Saccharomyces cerevisiae Trm1p, to Caenorhabditis elegans TRM1p and to open reading frames (ORFs) found in mouse and a plant (Arabidopsis thaliana) DNA. The human TRM1 gene was expressed at low temperature in Escherichia coli as a functional recombinant protein, able to catalyze the formation of dimethylguanosine in E.coli tRNA in vivo. It targeted solely position G26 in T7 transcribed spliced and unspliced human tRNATyr in vitro and in yeast trm1 mutant tRNA. Thus, the human TRM1 protein is a tRNA(m22G26)dimethyltransferase. Compared with yeast Trm1p, hTRM1p has a C-terminal protrusion of ~90 amino acids which shows similarities to a mouse protein related to RNA splicing. A deletion of these 90 C-terminal amino acids left the modification activity in vitro intact. Among point mutations in the hTRM1 gene, only those located in conserved regions of hTRM1p completely eliminated modification activity.  相似文献   
16.
17.
18.
19.
烟草花粉管亚原生质体的分离和培养行为   总被引:1,自引:0,他引:1  
应用酶法从烟草花粉管分离出大量亚原生质体。具核的和无核的亚原生质体之比约为1:1。这种亚原生质体在D_2培养基中培养后,不论有核的或是无核的都能生长管状结构和再生厚的壁。管状结构的生长有节律性,常呈结节状。随着管状结构的生长,细胞内含物逐渐流入生长中的管状结构内,有时会从薄的管状结构的顶端排出到培养液中。已生长管状结构的亚原生质体,具核的和无核的比例约为1:1.7,表明管状结构的生长和壁的再生与是否有核的存在无关。对酶液处理后花粉管亚原生质体从花粉管的释放和从单独的花粉管亚原生质体生长管状结构的过程,进行了活体连续观察和照相记录。实验结果说明,结节状的管状结构确实是从单独的一个亚原生质体形成的。管状结构的生长和壁的再生似乎与细胞质进入新生的管状结构有关。讨论了花粉管亚原生质体在植物遗传操作中应用的可能性。  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号