首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   15篇
  2011年   12篇
  2010年   7篇
  2009年   3篇
  2008年   8篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
71.
The muscle Lim protein knock-out (MLP-KO) mouse model is extensively used for studying the pathophysiology of dilated cardiomyopathy. However, explanation is lacking for the observed long survival of the diseased mice which develop until adulthood despite the gene defect, which theoretically predestines them to early death due to heart failure. We hypothesized that adaptive changes of cardiac intracellular calcium (Ca i 2+ ) handling might explain the phenomenon. In order to study the progression of changes in cardiac function and Ca i 2+ cycling, myocardial Ca i 2+ -transients recorded by Indo-1 surface fluorometry were assessed with concomitant measurement of hemodynamic performance in isolated Langendorff-perfused hearts of 3- and 9-month old MLP-KO animals. Hearts were challenged with β-agonist isoproterenol and the sarcoplasmic reticular Ca2+-ATPase (SERCA2a) inhibitor cyclopiazonic acid (CPA). Cardiac mRNA content and levels of key Ca2+ handling proteins were also measured. A decline in lusitropic function was observed in 3-month old, but not in 9-month old MLP-KO mice under unchallenged conditions. β-adrenergic responses to isoproterenol were similar in all the studied groups. The CPA induced an increase in end-diastolic Ca i 2+ -level and a decrease in Ca2+-sequestration capacity in 3-month old MLP-KO mice compared to age-matched controls. This unfavorable condition was absent at 9 months of age. SERCA2a expression was lower in 3-month old MLP-KO than in the corresponding controls and in 9-month old MLP-KO hearts. Our results show time-related recovery of hemodynamic function and an age-dependent compensatory upregulation of Ca i 2+ handling in hearts of MLP-KO mice, which most likely involve the normalization of the expression of SERCA2a in the affected hearts.  相似文献   
72.
A series of indole ring containing compounds were designed based on the structure of the gp41 complex in the region of the hydrophobic pocket. These compounds were synthesized using a Suzuki Coupling reaction, and evaluated using a fluorescence binding assay and cell–cell fusion assay. The observed inhibition constant of compound 7 was 2.1 μM, and the IC50 for cell–cell fusion inhibition was 1.1 μM. Assay data indicated that 7 is a promising lead compound for optimization into an effective low molecular weight fusion inhibitor.  相似文献   
73.
In the fission yeast, Schizosaccharomyces pombe, synaptonemal complexes (SCs) are not formed during meiotic prophase. However, structures resembling the axial elements of SCs, the so-called linear elements (LinEs) appear. By in situ immunostaining, we found Pmt3 (S. pombe's SUMO protein) transiently along LinEs, suggesting that SUMOylation of some component(s) of LinEs occurs during meiosis. Mutation of the SUMO ligase Pli1 caused aberrant LinE formation and reduced genetic recombination indicating a role for SUMOylation of LinEs for the regulation of meiotic recombination. Western blot analysis of TAP-tagged Rec10 demonstrated that there is a Pli1-dependent posttranslational modification of this protein, which is a major LinE component and a distant homolog of the SC protein Red1. Mass spectrometry (MS) analysis revealed that Rec10 is both phosphorylated and ubiquitylated, but no evidence for SUMOylation of Rec10 was found. These findings indicate that the regulation of LinE and Rec10 function is modulated by Pli1-dependent SUMOylation of LinE protein(s) which directly or indirectly regulates Rec10 modification. On the side, MS analysis confirmed the interaction of Rec10 with the known LinE components Rec25, Rec27, and Hop1 and identified the meiotically upregulated protein Mug20 as a novel putative LinE-associated protein.  相似文献   
74.
Cell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in other developmental or pathological processes as well. During vasculogenesis, multicellular sprouts invade rapidly into avascular areas, eventually creating a polygonal pattern. Sprout elongation, in turn, depends on a continuous supply of endothelial cells, streaming along the sprout toward its tip. As long-term videomicroscopy of in vitro cell cultures reveal, cell lines such as C6 gliomas or 3T3 fibroblasts form multicellular linear arrangements in vitro, similar to the multicellular vasculogenic sprouts. We show evidence that close contact with elongated cells enhances and guides cell motility. To model the patterning process we augmented the widely used cellular Potts model with an inherently nonequilibrium interaction whereby surfaces of elongated cells become more preferred adhesion substrates than surfaces of well-spread, isotropic cells.  相似文献   
75.
Exocytic vesicles that accumulate in a temperature-sensitive sec6 mutant at a restrictive temperature can be separated into at least two populations with different buoyant densities and unique cargo molecules. Using a sec6 mutant background to isolate vesicles, we have found that vacuolar protein sorting mutants that block an endosome-mediated route to the vacuole, including vps1, pep12, vps4, and a temperature-sensitive clathrin mutant, missort cargo normally transported by dense exocytic vesicles, such as invertase, into light exocytic vesicles, whereas transport of cargo specific to the light exocytic vesicles appears unaffected. Immunoisolation experiments confirm that missorting, rather than a changed property of the normally dense vesicles, is responsible for the altered density gradient fractionation profile. The vps41Delta and apl6Delta mutants, which block transport of only the subset of vacuolar proteins that bypasses endosomes, sort exocytic cargo normally. Furthermore, a vps10Delta sec6 mutant, which lacks the sorting receptor for carboxypeptidase Y (CPY), accumulates both invertase and CPY in dense vesicles. These results suggest that at least one branch of the yeast exocytic pathway transits through endosomes before reaching the cell surface. Consistent with this possibility, we show that immunoisolated clathrin-coated vesicles contain invertase.  相似文献   
76.
In Escherichia coli the Min protein system plays an important role in positioning the division site. We show that this system also has an effect on timing of cell division. We do this in a quantitative way by measuring the cell division waiting time (defined as time difference between appearance of a division site and the division event) and the Z-ring existence time. Both quantities are found to be different in WT and cells without functional Min system. We develop a series of theoretical models whose predictions are compared with the experimental findings. Continuous improvement leads to a final model that is able to explain all relevant experimental observations. In particular, it shows that the chromosome segregation defect caused by the absence of Min proteins has an important influence on timing of cell division. Our results indicate that the Min system affects the septum formation rate. In the absence of the Min proteins this rate is reduced, leading to the observed strongly randomized cell division events and the longer division waiting times.  相似文献   
77.
78.
Eosinophilic disorders of the gastrointestinal tract are an emerging subset of immune pathologies within the spectrum of allergic inflammation. Eosinophilic Esophagitis (EoE), once considered a rare disease, is increasing in incidence, with a rate of over 1 in 10,000 in the US, for unknown reasons. The clinical management of EoE is challenging, thus there is an urgent need for understanding the etiology and pathophysiology of this eosinophilic disease to develop better therapeutic approaches. In this open label, single arm, unblinded study, we evaluated the effects of an anti-IgE treatment, omalizumab, on local inflammation in the esophagus and clinical correlates in patients with EoE. Omalizumab was administered for 12 weeks to 15 subjects with long standing EoE. There were no serious side effects from the treatment. Esophageal tissue inflammation was assessed both before and after therapy. After 3 months on omalizumab, although tissue Immunoglobulin E (IgE) levels were significantly reduced in all but two of the subjects, we found that full remission of EoE, which is defined as histologic and clinical improvement only in 33% of the patients. The decrease in tryptase-positive cells and eosinophils correlated significantly with the clinical outcome as measured by improvement in endoscopy and symptom scores, respectively. Omalizumab-induced remission of EoE was limited to subjects with low peripheral blood absolute eosinophil counts. These findings demonstrate that in a subset of EoE patients, IgE plays a role in the pathophysiology of the disease and that anti-IgE therapy with omalizumab may result in disease remission. Since this study is open label there is the potential for bias, hence the need for a larger double blind placebo controlled study. The data presented in this pilot study provides a foundation for proper patient selection to maximize clinical efficacy.

Trial Registration

ClinicalTrials.gov NCT01040598  相似文献   
79.
In Myxococcus xanthus the gliding motility machinery is assembled at the leading cell pole to form focal adhesions, translocated rearward to propel the cell, and disassembled at the lagging pole. We show that MglA, a Ras-like small G-protein, is an integral part of this machinery. In this function, MglA stimulates the assembly of the motility complex by directly connecting it to the MreB actin cytoskeleton. Because the nucleotide state of MglA is regulated spatially and MglA only binds MreB in the guanosine triphosphate–bound form, the motility complexes are assembled at the leading pole and dispersed at the lagging pole where the guanosine triphosphatase activating protein MglB disrupts the MglA–MreB interaction. Thus, MglA acts as a nucleotide-dependent molecular switch to regulate the motility machinery spatially. The function of MreB in motility is independent of its function in peptidoglycan synthesis, representing a coopted function. Our findings highlight a new function for the MreB cytoskeleton and suggest that G-protein–cytoskeleton interactions are a universally conserved feature.  相似文献   
80.
In bacteria, large G domain GTPases have well-established functions in translation, protein translocation, tRNA modification and ribosome assembly. In addition, bacteria also contain small Ras-like GTPases consisting of stand-alone G domains. Recent data have revealed that small Ras-like GTPases as well as large G domain GTPases in bacteria function in the regulation of cell polarity, signal transduction and possibly also in cell division. The small Ras-like GTPase MglA together with its cognate GAP MglB regulates cell polarity in Myxococcus xanthus, and the small Ras-like GTPase CvnD9 in Streptomyces coelicolor is involved in signal transduction. Similarly, the large GTPase FlhF together with the ATPase FlhG regulates the localization and number of flagella in polarly flagellated bacteria. Moreover, large dynamin-like GTPases in bacteria may function in cell division. Thus, the function of GTPases in bacteria may be as pervasive as in eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号