首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   6篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   9篇
  2013年   7篇
  2012年   9篇
  2011年   6篇
  2010年   1篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1993年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有111条查询结果,搜索用时 672 毫秒
61.
62.
Prokineticins are angiogenic hormones that activate two G protein-coupled receptors: PKR1 and PKR2. PKR1 has emerged as a critical mediator of cardiovascular homeostasis and cardioprotection. Identification of non-peptide PKR1 agonists that contribute to myocardial repair and collateral vessel growth hold promises for treatment of heart diseases. Through a combination of in silico studies, medicinal chemistry, and pharmacological profiling approaches, we designed, synthesized, and characterized the first PKR1 agonists, demonstrating their cardioprotective activity against myocardial infarction (MI) in mice. Based on high throughput docking protocol, 250,000 compounds were computationally screened for putative PKR1 agonistic activity, using a homology model, and 10 virtual hits were pharmacologically evaluated. One hit internalizes PKR1, increases calcium release and activates ERK and Akt kinases. Among the 30 derivatives of the hit compound, the most potent derivative, IS20, was confirmed for its selectivity and specificity through genetic gain- and loss-of-function of PKR1. Importantly, IS20 prevented cardiac lesion formation and improved cardiac function after MI in mice, promoting proliferation of cardiac progenitor cells and neovasculogenesis. The preclinical investigation of the first PKR1 agonists provides a novel approach to promote cardiac neovasculogenesis after MI.  相似文献   
63.
Malignant pleural mesothelioma (MPM) is an aggressive, asbestos-related malignancy of the thoracic pleura. Although, platinum-based agents are the first line of therapy, there is an urgent need for second-line therapies to treat the drug-resistant MPM. Cell cycle as well as apoptosis pathways are frequently altered in MPM and thus remain attractive targets for intervention strategies. Curcumin, the major component in the spice turmeric, alone or in combination with other chemotherapeutics has been under investigation for a number of cancers. In this study, we investigated the biological and molecular responses of MPM cells to curcumin treatments and the mechanisms involved. Flow-cytometric analyses coupled with western immunoblotting and gene-array analyses were conducted to determine mechanisms of curcumin-dependent growth suppression of human (H2373, H2452, H2461, and H226) and murine (AB12) MPM cells. Curcumin inhibited MPM cell growth in a dose- and time-dependent manner while pretreatment of MPM cells with curcumin enhanced cisplatin efficacy. Curcumin activated the stress-activated p38 kinase, caspases 9 and 3, caused elevated levels of proapoptotic proteins Bax, stimulated PARP cleavage, and apoptosis. In addition, curcumin treatments stimulated expression of novel transducers of cell growth suppression such as CARP-1, XAF1, and SULF1 proteins. Oral administration of curcumin inhibited growth of murine MPM cell-derived tumors in vivo in part by stimulating apoptosis. Thus, curcumin targets cell cycle and promotes apoptosis to suppress MPM growth in vitro and in vivo. Our studies provide a proof-of-principle rationale for further in-depth analysis of MPM growth suppression mechanisms and their future exploitation in effective management of resistant MPM.  相似文献   
64.
Medulloblastomas (MBs) constitute an aggressive class of intracranial pediatric tumors. Current multimodality treatments for MBs include surgery, ionizing radiation, and chemotherapy. Toxic side effects of therapies coupled with high incidence of recurrence and the metastatic spread warrant development of more effective, less toxic therapies for this disease. CARP-1/CCAR1 is a peri-nuclear phospho-protein that is a co-activator of the cell cycle regulatory anaphase promoting complex/cyclosome (APC/C) E3 ligase. CARP-1 functional mimetics (CFMs) are a novel class of small molecule compounds that interfere with CARP-1 binding with APC/C subunit APC-2, and suppress growth of a variety of cancer cells in part by promoting apoptosis. Here we investigated MB growth inhibitory potential of the CFMs and found that CFM-4 inhibits growth of MB cells in part by inducing CARP-1 expression, promoting PARP cleavage, activating pro-apoptotic stress-activated protein kinases (SAPK) p38 and JNK, and apoptosis. Gene-array-based analysis of the CFM-4-treated Daoy MB cells indicated down-regulation of a number of key cell growth and metastasis-promoting genes including cell motility regulating small GTP binding protein p21Rac1, and extracellular matrix metallopeptidase (MMP)-10. Moreover, CFM-4 treatment stimulated expression of a number of molecules such as neurotrophin (NTF)3, and NF-κB signaling inhibitors ABIN1 and 2 proteins. Overexpression of NTF3 resulted in reduced MB cell viability while knock-down of NTF3 interfered with CFM-4-dependent loss of viability. CFMs also attenuated biological properties of the MB cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated membranes. Together our data support anti-MB properties of CFM-4, and provide a proof-of-concept basis for further development of CFMs as potential anti-cancer agents for MBs.  相似文献   
65.
After a brief overview of NMR and X-ray crystallography studies on protein flexibility under pressure, we summarize the effects of hydrostatic pressure on the native fold of azurin from Pseudomonas aeruginosa as inferred from the variation of the intrinsic phosphorescence lifetime and the acrylamide bimolecular quenching rate constants of the buried Trp residue. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of the hydration of the polypeptide. The study of the effect of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (ΔV(0)) of azurin and on the internal dynamics of the protein fold under pressure demonstrate that the creation of an internal cavity will enhance the plasticity and lower the stability of the globular structure. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   
66.

Introduction

Maternal and perinatal mortality remain a challenge in resource-limited countries, particularly among the rural poor. To save lives at birth health facility delivery is recommended. However, increasing coverage of institutional deliveries may not translate into mortality reduction if shortage of qualified staff and lack of enabling working conditions affect quality of services. In Tanzania childbirth care is available in all facilities; yet maternal and newborn mortality are high. The study aimed to assess in a high facility density rural context whether a health system organization with fewer delivery sites is feasible in terms of population access.

Methods

Data on health facilities’ location, staffing and delivery caseload were examined in Ludewa and Iringa Districts, Southern Tanzania. Geospatial raster and network analysis were performed to estimate access to obstetric services in walking time. The present geographical accessibility was compared to a theoretical scenario with a 40% reduction of delivery sites.

Results

About half of first-line health facilities had insufficient staff to offer full-time obstetric services (45.7% in Iringa and 78.8% in Ludewa District). Yearly delivery caseload at first-line health facilities was low, with less than 100 deliveries in 48/70 and 43/52 facilities in Iringa and Ludewa District respectively. Wide geographical overlaps of facility catchment areas were observed. In Iringa 54% of the population was within 1-hour walking distance from the nearest facility and 87.8% within 2 hours, in Ludewa, the percentages were 39.9% and 82.3%. With a 40% reduction of delivery sites, approximately 80% of population will still be within 2 hours’ walking time.

Conclusions

Our findings from spatial modelling in a high facility density context indicate that reducing delivery sites by 40% will decrease population access within 2 hours by 7%. Focused efforts on fewer delivery sites might assist strengthening delivery services in resource-limited settings.  相似文献   
67.
The objective of this study was to assess the effects of ischemic preconditioning (IP) on hydroxyl free radical production in an in vivo rabbit model of regional ischemia and reperfusion. Another goal was to determine whether KATP channels are involved in these effects.

The hearts of anesthetized and mechanically ventilated New Zealand White rabbits were exposed through a left thoracotomy. After IV salicylate (100?mg/kg) administration, all animals underwent a 30-min stabilization period followed by 40?min of regional ischemia and 2?h of reperfusion. In the IP group, IP was elicited by 5?min of ischemia followed by 10?min of reperfusion (prior to the 40-min ischemia period). Glibenclamide, a KATP channel blocker, was administered prior to the preconditioning stimulus. Infarct size was measured by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. We quantified the hydroxyl-mediated conversion of salicylate to its 2,3 and 2,5-dihydroxybenzoate derivatives during reperfusion by high performance liquid chromatography coupled with electro-chemical detection.

IP was evidenced by reduced infarct size compared to control animals: 22% vs. 58%, respectively. Glibenclamide inhibited this cardioprotective effect and infarct size was 53%. IP limited the increase in 2,3 and 2,5-dihydroxybenzoic acid to 24.3 and 23.8% above baseline, respectively. Glibenclamide abrogated this effect and the increase in 2,3 and 2,5-dihydroxybenzoic acid was 94.3 and 85% above baseline levels, respectively, similar to the increase in the control group. We demonstrated that IP decreased the formation of hydroxyl radicals during reperfusion. The fact that glibenclamide inhibited this effect, indicates that KATP channels play a key role in this cardioprotective effect of IP.  相似文献   
68.
In herbivorous insects, the choice that females make for a suitable host plant is crucial for survival of its offspring because the neonate larvae are generally not capable of moving great distances. The preference-performance hypothesis states that herbivore females will choose to oviposit on hosts on which their offspring will have better performance. In this study, we investigated whether Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) females are able to discriminate among a weedy race, a landrace, and a commercial cultivar of tomato plants, Solanum lycopersicum L. (Solanaceae), and how their choice affects the offspring performance. Additionally, we identified the volatile compounds and recorded the density of glandular trichomes of the tomato plants. Females did not show a preference for any of the three types of tomato plants. Females oviposited more on the adaxial surface of leaves of commercial cultivar plants than on (any surface of) leaves of weedy-race plants. The relative abundance of volatiles varied quantitatively among the three types of tomato plants. Commercial cultivar plants released a higher abundance of volatiles than weedy race and landrace plants. Weedy-race plants had a higher density of glandular trichomes types I and VI than the commercial cultivar. More neonate larvae died if fed on the weedy race and landrace plants than when reared on commercial cultivar plants. Results suggested that the higher mortality of Tni larvae may be related to a higher density of glandular trichomes on landrace and weedy-race plants than on commercial cultivar plants, although other constitutive and induced defenses may be involved. Our results do not support the preference-performance hypothesis.  相似文献   
69.
It is becoming increasingly evident that cancer stem cells play a vital role in development and progression of cancers and relapse following chemotherapy. The present study examines the presence of cancer stem-like cells (CSC) in adenomatous polyps and in normal appearing colonic mucosa in humans during aging. The number of polyps was found to increase linearly with advancing age (r2 = 0.92, p < 0.02). Immunohistochemical analysis revealed co-localization of CSC markers CD44 and CD166 in colonic polyps. Real-time RT-PCR analysis of normal appearing mucosa from subjects with adenomatous polyps showed an age-related rise in CSC as evidenced by the increased expression of CD44, CD166 and ESA. A similar phenomenon was also observed for EGFR. In addition, the expression each CSC marker was found to be about 2-fold higher in subjects with 3–4 polyps than those with 1–2 polyps. In conclusion, our results show that colon cancer stem-like cells are present in the premalignant adenomatous polyps as well in normal appearing colonic mucosa. Moreover, our observation of the age-related rise in CSC in macroscopically normal colonic mucosa suggests a predisposition of the organ to developing colorectal cancer.  相似文献   
70.
Freeze-induced perturbations of the protein native fold are poorly understood owing to the difficulty of monitoring their structure in ice. Here, we report that binding of the fluorescence probe 1-anilino-8-naphthalene sulfonate (ANS) to proteins in ice can provide a general monitor of ice-induced alterations of their tertiary structure. Experiments conducted with copper-free azurin from Pseudomonas aeruginosa and mutants I7S, F110S, and C3A/C26A correlate the magnitude of the ice-induced perturbation, as inferred from the extent of ANS binding, to the plasticity of the globular fold, increasing with less stable globular folds as well as when the flexibility of the macromolecule is enhanced. The distortion of the native structure inferred from ANS binding was found to draw a parallel with the extent of irreversible denaturation by freeze-thawing, suggesting that these altered conformations play a direct role on freeze damage. ANS binding experiments, extended to a set of proteins including serum albumin, alpha-amylase, beta-galactosidase, alcohol dehydrogenase from horse liver, alcohol dehydrogenase from yeast, lactic dehydrogenase, and aldolase, confirmed that a stressed condition of the native fold in the frozen state appears to be general to most proteins and pointed out that oligomers tend to be more labile than monomers presumably because the globular fold can be further destabilized by subunit dissociation. The results of this study suggest that the ANS binding method may find practical utility in testing the effectiveness of various additives employed in protein formulations as well as to devise safer freeze-drying protocols of pharmaceutical proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号