首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2102篇
  免费   194篇
  2022年   24篇
  2021年   60篇
  2020年   37篇
  2019年   36篇
  2018年   33篇
  2017年   32篇
  2016年   43篇
  2015年   98篇
  2014年   96篇
  2013年   99篇
  2012年   117篇
  2011年   142篇
  2010年   78篇
  2009年   69篇
  2008年   90篇
  2007年   126篇
  2006年   87篇
  2005年   82篇
  2004年   75篇
  2003年   85篇
  2002年   71篇
  2001年   38篇
  2000年   27篇
  1999年   19篇
  1998年   23篇
  1997年   16篇
  1996年   13篇
  1995年   17篇
  1994年   11篇
  1992年   15篇
  1991年   14篇
  1990年   20篇
  1989年   22篇
  1988年   13篇
  1987年   10篇
  1986年   16篇
  1984年   17篇
  1983年   16篇
  1982年   18篇
  1981年   12篇
  1979年   10篇
  1978年   15篇
  1977年   11篇
  1976年   18篇
  1974年   15篇
  1968年   11篇
  1967年   10篇
  1964年   14篇
  1963年   10篇
  1962年   11篇
排序方式: 共有2296条查询结果,搜索用时 265 毫秒
81.
82.
The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G‐protein modulation and the leptin triple antagonist (TA) on the action of leptin in the PPN. Whole‐cell patch clamp recordings were performed in rat brainstem slices from 9 to 17 day old pups. Previous results showed that leptin caused a partial blockade of sodium (INa) and h‐current (IH) in PPN neurons. TA (100 nM) reduced the blockade of INa (~ 50% reduction) and IH (~ 93% reduction) caused by leptin. Intracellular guanosine 5′‐[β‐thio]diphosphate trilithium salt (a G‐protein inhibitor) significantly reduced the effect of leptin on INa(~ 60% reduction) but not on IH (~ 25% reduction). Intracellular GTPγS (a G‐protein activator) reduced the effect of leptin on both INa (~ 80% reduction) and IH (~ 90% reduction). These results suggest that the effects of leptin on the intrinsic properties of PPN neurons are leptin receptor‐ and G‐protein dependent. We also found that leptin enhanced NMDA receptor‐mediated responses in single neurons and in the PPN population as a whole, an effect blocked by TA. These experiments further strengthen the association between leptin dysregulation and sleep disturbances.

  相似文献   

83.
The lower plant Physcomitrella patens synthesizes several long-chain polyunsaturated fatty acids (LC-PUFAs) by a series of desaturation and elongation reactions. In the present study, the full-length cDNAs for two novel fatty acid elongases designated PpELO1 and PpELO2 were isolated from P. patens using a PCR-based cloning strategy. These cDNAs encoding proteins of 335 and 280 amino acids with predicted molecular masses of 38.7 and 32.9 kDa, respectively, are predicted to contain seven transmembrane domains with a possible localization in the subcellular endoplasmic reticulum. Sequence comparisons and phylogenetic analysis revealed that they are closely related to other LC-PUFA elongases of the lower eukaryotes such as the Δ5- and Δ6-elongases of Marchantia polymorpha as well as the Δ6-elongase of P. patens. Heterologous expression of the PpELO1 in Saccharomyces cerevisiae led to the elongation of Δ9-, Δ6-C18, and Δ5-C20 LC-PUFAs, whereas only Δ9- and Δ6-C18 LC-PUFA substrates were used by PpELO2. Chimeric proteins were constructed to identify the amino acid regions most likely to be involved in the determination of the fatty acid substrate specificity. The expression of eight chimeric proteins in yeast revealed that substitution of the C-terminal 50 amino acids from PpELO1 into PpELO2 resulted in a high specificity for C20 fatty acid substrates. As a result, we suggest that the C-terminal region of PpELO1 is sufficient for C20 substrate elongation. Overall, these results provide important insights into the structural basis for substrate specificity of PUFA-generating ELO enzymes.  相似文献   
84.
85.
The liver is the principal source of glutamate in blood plasma. Recently we have discovered that efflux of glutamate from hepatocytes is catalyzed by the transporter OAT2 (human gene symbol SLC22A7). Organic anion transporter 2 (OAT2) is an integral membrane protein of the sinusoidal membrane domain; it is primarily expressed in liver and much less in kidney, both in rats and humans. Many years ago, Häussinger and coworkers have demonstrated in isolated perfused rat liver that benzoic acid or specific 2-oxo acid analogs of amino acids like e.g. 2-oxo-4-methyl-pentanoate (‘2-oxo-leucine’) strongly stimulate release of glutamate (up to 7-fold); ‘2-oxo-valine’ and the corresponding amino acids were without effect. The molecular mechanism of efflux stimulation has remained unclear. In the present study, OAT2 from human and rat were heterologously expressed in 293 cells. Addition of 1 mmol/l benzoic acid to the external medium increased OAT2-specific efflux of glutamate up to 20-fold; ‘2-oxo-leucine’ was also effective, but not ‘2-oxo-valine’. Similar effects were seen for efflux of radiolabeled orotic acid. Expression of OAT2 did not increase uptake of benzoic acid; thus, benzoic acid is no substrate, and trans-stimulation can be excluded. Instead, further experiments suggest that increased efflux of glutamate is caused by direct interaction of benzoic acid and specific 2-oxo acids with OAT2. We propose that stimulators bind to a distinct extracellular site and thereby accelerate relocation of the empty substrate binding site to the intracellular face. Increased glutamate efflux at OAT2 could be the main benefit of benzoate treatment in patients with urea cycle defects.  相似文献   
86.
Frequently, vital rates are driven by directional, long‐term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems.  相似文献   
87.

Background

Selection criteria are important for analyzing domestication of perennial plant species, which experience a selection pressure throughout several human generations. We analyze the preferred morphological characteristics of Crescentia cujete fruits, which are used as bowls by the Maya of Yucatan, according to the uses they are given and the phenotypic consequences of artificial selection between one wild and three domesticated varieties.

Methods

We performed 40 semi-structured interviews in seven communities. We calculated Sutrop’s salience index (S) of five classes of ceremonial and daily life uses, and of each item from the two most salient classes. We sampled 238 bowls at homes of people interviewed and compared their shape, volume and thickness with 139 fruits collected in homegardens and 179 from the wild. Morphology of varieties was assessed in fruit (n?=?114 trees) and vegetative characters (n?=?136 trees). Differences between varieties were evaluated through linear discriminant analysis (LDA).

Results

Use of bowls as containers for the Day of the Dead offerings was the most salient class (S?=?0.489) with chocolate as its most salient beverage (S?=?0.491), followed by consumption of daily beverages (S?=?0.423), especially maize-based pozol (S?=?0.412). The sacred saka’ and balche' are offered in different sized bowls during agricultural and domestic rituals. Roundness was the most relevant character for these uses, as bowls from households showed a strong selection towards round shapes compared with wild and homegarden fruits. Larger fruits from domesticated varieties were also preferred over small wild fruits, although in the household different sizes of the domesticated varieties are useful. LDA separated wild from domesticated trees (p?<?0.001) according to both fruit and vegetative variables, but domesticated varieties were not different among themselves.

Conclusions

The association between C. cujete bowls and traditional beverages in ritual and daily life situations has driven for centuries the selection of preferred fruit morphology in this tree. Selection of fruit roundness and volume has allowed for the differentiation between the wild variety and the three domesticated ones, counteracting gene flow among them. By choosing the best fruits from domesticated varieties propagated in homegardens, the Maya people model the domestication process of this important tree in their culture.
  相似文献   
88.
Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.  相似文献   
89.
Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006–2008) and after the impact (2009–2010) at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates) was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change.  相似文献   
90.
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF''s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF''s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD.Glial cell line-derived neurotrophic factor (GDNF) is the founding member of the four ligands in the GDNF family, which belong to the transforming growth factor-β superfamily.1 GDNF was characterized as a potent survival factor for many neurons in culture such as dopaminergic, motor, sympathetic, parasympathetic, sensory and enteric neurons.1, 2 In addition, in dopaminergic neuron cultures GDNF stimulates neuronal differentiation, neurite outgrowth, synapse formation and dopamine release.1, 2As degeneration of midbrain dopaminergic neurons in the substantia nigra pars compacta (SNpc) represents a major hallmark of Parkinson disease (PD), the most common neurodegenerative movement disorder, GDNF has raised considerable interest as a therapeutic molecule for the treatment of PD.3, 4, 5 PD affects >2% of individuals over the age of 60 years, but no curative treatment is available to date, mainly due to a lack of understanding disease etiology.6, 7, 8 Preclinical studies in the established 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) rodent and primate models of PD demonstrated a substantial neuroprotection and regeneration effect by striatal provided GDNF or its close relative neurturin.3, 4, 9 However, clinical phase II trials on PD patients using GDNF or neurturin did so far not convincingly recapitulate their beneficial effects on the dopaminergic system in humans most likely due to technical problems and the selection of advanced PD patients.10, 11, 12, 13GDNF signaling is highly complex as this neurotrophic factor can bind to a variety of receptors, thus being able to induce pleiotropic effects. GDNF efficiently binds to the GPI-linked GDNF family receptor α1 (GFRα1).1, 2 It has been shown that the GDNF/GFRα1 complex can activate not only the canonical GDNF receptor Ret, a receptor tyrosine kinase which signals through the sarcoma protein (Src)/rat sarcoma (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt, NF-κB (nuclear factor ''kappa-light-chain-enhancer'' of activated B cells), JNK (c-Jun N-terminal kinases) and PLCγ (phospholipase γ) pathway, but also with other signaling inducing receptors.1, 2, 4, 5, 13 So far, at least four alternative GDNF receptors have been described which are all expressed in midbrain dopaminergic neurons, NCAM,14, 15 the integrins αV and βI,14, 16 syndecan 317 and N-cadherin.18 Interestingly, Ret is not essential during pre- and postnatal development of the mouse dopaminergic system,19, 20, 21, 22, 23 but specifically required for the maintenance of SNpc dopaminergic neurons and their striatal innervation in aged mice.23, 24, 25 In contrast, GDNF seems most likely under physiological conditions to be dispensable during development and maintenance of midbrain dopaminergic neurons in mice, although conflicting results exist.26, 27, 28 Thus, Ret might be activated by a GDNF-independent mechanism to stimulate SNpc dopaminergic neuron survival. In addition, the in vivo function of the alternative GDNF receptors in the dopaminergic system under physiological and pathophysiological conditions, like PD, and their dependence on GDNF has not yet been addressed in detail. This raised the important question which GDNF receptor might be required to mediate GDNF''s reported neuroprotective and regenerative effect in the dopaminergic system in PD animal models and potentially in PD patients.5, 29Previously, we showed in dopaminergic neuron-specific Ret knockout mice that Ret receptor loss does not result in a higher vulnerability of midbrain dopaminergic neurons against MPTP but to less resprouting of left over dopaminergic neuron axons in the striatum after MPTP intoxication.30 In adult mice endogenous GDNF levels are rather low.26, 31 Therefore, we could not rule out in that study the possibility, that higher levels of GDNF—as also used in the clinical GDNF trials in PD patients—might have neuroprotective and regenerating effects even in the absence of the Ret receptor. Here we addressed now this question by viral overexpression of GDNF in MPTP-treated mice lacking expression of Ret again specifically in dopaminergic neurons.23, 30 We found that in the absence of Ret in dopaminergic neurons even a substantial overexpression of GDNF in the striatum does not have a neuroprotective and regenerative effect. Thus, despite the expression of alternative GDNF receptors on midbrain dopaminergic neurons, the presence of the canonical GDNF receptor Ret seems to be mandatory for mediating GDNF''s beneficial survival and axonal resprouting effect in these neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号