首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2052篇
  免费   183篇
  2235篇
  2023年   10篇
  2022年   25篇
  2021年   59篇
  2020年   37篇
  2019年   36篇
  2018年   33篇
  2017年   32篇
  2016年   43篇
  2015年   98篇
  2014年   95篇
  2013年   99篇
  2012年   115篇
  2011年   142篇
  2010年   78篇
  2009年   69篇
  2008年   89篇
  2007年   125篇
  2006年   86篇
  2005年   81篇
  2004年   72篇
  2003年   79篇
  2002年   67篇
  2001年   30篇
  2000年   23篇
  1999年   16篇
  1998年   21篇
  1997年   16篇
  1996年   12篇
  1995年   15篇
  1992年   13篇
  1991年   13篇
  1990年   17篇
  1989年   17篇
  1988年   11篇
  1986年   15篇
  1984年   14篇
  1983年   15篇
  1982年   18篇
  1981年   12篇
  1979年   11篇
  1978年   15篇
  1977年   11篇
  1976年   18篇
  1974年   15篇
  1968年   11篇
  1967年   10篇
  1964年   14篇
  1963年   10篇
  1962年   11篇
  1938年   9篇
排序方式: 共有2235条查询结果,搜索用时 15 毫秒
101.
Stomatal conductance in improved Pima cotton cultivars (Gossypium barbadense) has been previously shown to be positively associated with heat resistance and yield potential. In the present study we determined the mode of inheritance of stomatal conductance in crosses of six G. barbadense parents varying in origin, degree of agronomic development and stomatal conductance. Parents included a primitive tropical cotton (B368), two obsolete cultivars (St Vincent V135, Pima 32), one modern commercial line (Pima S-6) and two elite genotypes of the Pima germplasm (P70, P73). These lines showed distinct differences in stomatal conductance, under greenhouse and field conditions. The primitive B368 had the lowest conductance, and the elite lines the highest. Generation means analysis was used to quantify genetic effects in the crosses P70 × St Vincent V135, Pima S-6 × B368, Pima S-6 × Pima 32, P73 × Pima 32 and P73 × Pima S-6. Best-fit models of the inheritance of stomatal conductance varied in complexity from a simple additive-dominance model in the cross P70 × St. Vincent V135 to models displaying digenic epistatic interactions in the remaining crosses. Significant additive mean effects for stomatal conductance were detected in all crosses. Dominance mean effects were significant in the crosses P73 × Pima 32 and P73 × Pima S-6. Broadsense heritability estimates of stomatal conductance were relatively low (0.16–0.44) in all crosses except Pima S-6 × B368 (0.74). Results also show that the mode of inheritance of stomatal conductance is multigenic, and may have maternal as well as nuclear components. Recouping higher stomatal conductance levels from genetically wider crosses appears feasible and could proceed at a moderate rate. Fixing higher levels of stomatal conductance in populations from crosses of elite germplasm may be more difficult because of the presence of dominant mean effects and digenic epistatic interactions.  相似文献   
102.
The PYRIN domain is a conserved sequence motif identified in more than 20 human proteins with putative functions in apoptotic and inflammatory signalling pathways. The three-dimensional structure of the PYRIN domain from human ASC was determined by NMR spectroscopy. The structure determination reveals close structural similarity to death domains, death effector domains, and caspase activation and recruitment domains, although the structural alignment with these other members of the death-domain superfamily differs from previously predicted amino acid sequence alignments. Two highly positively and negatively charged surfaces in the PYRIN domain of ASC result in a strong electrostatic dipole moment that is predicted to be present also in related PYRIN domains. These results suggest that electrostatic interactions play an important role for the binding between PYRIN domains. Consequently, the previously reported binding between the PYRIN domains of ASC and ASC2/POP1 or between the zebrafish PYRIN domains of zAsc and Caspy is proposed to involve interactions between helices 2 and 3 of one PYRIN domain with helices 1 and 4 of the other PYRIN domain, in analogy to previously reported homophilic interactions between caspase activation and recruitment domains.  相似文献   
103.
Subtidal reef surveys within the Lord Howe Island Marine Park revealed that populations of the sea urchin Tripneustes gratilla underwent an explosive outbreak in some regions of the park over a 2-year period. This urchin was rare or absent during 2006 surveys at 33 sites studied, but at sites off northern Lord Howe Island in 2008, densities averaged >1.3 m−2. Dramatic increases in T. gratilla density (exceeding 4 m−2) were observed at some sites. We quantify community-level impacts of T. gratilla using ‘before-after’ and ‘control-impact’ data. Zones closed to fishing exhibited similar increases in T. gratilla density to zones open to fishing. Although not previously reported as a keystone species affecting coral habitat, T. gratilla was found to possess an ‘ecosystem engineer’ function. Outbreak sites were characterised by significant declines in cover of foliose algae, including red algae, which decreased from 11.2% in 2006 compared to 2.5% in 2008. Brown foliose algae also declined at sites where T. gratilla outbreaks occurred, averaging 20.4% in 2006 compared to 1.8% in 2008. By contrast, crustose coralline algal cover increased at sites where high T. gratilla densities were observed, from 2.7% in 2006 to an average of 42.6% in 2008. We found no clear indication of impacts on sessile invertebrates or flow-on effects to other levels of the food web, with no significant change in coral cover or densities of mobile invertebrates or fish populations associated with the T. gratilla outbreak.  相似文献   
104.
To study the dynamics of individual half-sarcomeres in striated muscle contraction, myofibrils prepared from rabbit psoas muscle and left ventricles of guinea pig were immunostained with two conjugated antibody complexes consisting of a primary antibody against either alpha-actinin or myomesin and a secondary fluorescently labeled Fab-fragment. We simultaneously measured force kinetics and determined the positions of the Z-line and M-band signals by fluorescence video microscopy and sophisticated computer vision (tracking) algorithms. Upon calcium activation, sarcomeres and half-sarcomeres shortened nonuniformly. Shortening occurred first rapidly and exponentially during the force rise and then slowly during the force plateau. In psoas myofibrils, time-resolved displacements of the A-band in sarcomeres were observed, i.e., the two halves of individual sarcomeres behaved nonuniformly. Nonuniformity in length changes between the two halves of sarcomeres was comparable to that between two adjacent half-sarcomeres of neighboring sarcomeres. Sequential lengthening of half-sarcomeres was observed in cardiac myofibrils during the rapid phase of force relaxation. The independent dynamics of the halves in a sarcomere reveals the half-sarcomere as the functional unit rather than the structural unit, the sarcomere. The technique will facilitate the study of filament sliding within individual half-sarcomeres and the mechanics of intersegmental chemomechanical coupling in multisegmental striated muscles.  相似文献   
105.
Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD variation across high biomass, high diversity tropical landscapes.  相似文献   
106.
An allopurinol metabolite, 4-aminopyrazolopyrimidine, was tested on two different strains of mice (NMRI-IVIC and C57Bl/6J) that had been infected 4 days earlier with the virulent Ya strain of Trypanosoma cruzi. Low doses of 4-aminopyrazolopyrimidine (0.125-0.500 mg/kg body wt/day) for 10 days induced a significant reduction in parasitemia (direct counts and subinoculation experiments) and increased survival time (without any evidence of toxicity) compared with untreated animals. When tested in vitro, 4-aminopyrazolopyrimidine was sixfold more active than allopurinol as a trypanostatic drug. The low therapeutic doses of 4-aminopyrazolopyrimidine suggest that this drug may be useful in the treatment of acute Chagas' disease.  相似文献   
107.
Capillary electrophoresis with laser-induced fluorescence detection was used to separate and detect doxorubicin and at least five metabolites from NS-1 cells that were treated with 25 microM doxorubicin for 8 h. Using 10 mM borate, 10 mM sodium dodecyl sulfate (pH 9.3) as separation buffer, the 488-nm argon-ion laser line for fluorescence excitation, and a 635 +/- 27.5 nm bandpass filter for detection, the limit of detection (S/N=3) for doxorubicin is 61 +/- 13 zmol. This low limit of detection allows for the detection of a larger number of metabolites than previously reported. Two extraction procedures were performed: a bulk liquid-liquid extraction and an in-capillary single-cell lysis. While in the bulk liquid-liquid extraction procedure, recovery for doxorubicin range from 50 to 99%, in single cell analysis the recovery is expected to be complete. Furthermore performing lysis of a single cell inside the separation capillary prevents doxorubicin or metabolite loss or degradation during handling. Based on the bulk method the calculated metabolite abundance is in the sub-amol per cell range while it varies from 0.1 to 1.1 fmol per cell in single cell analysis confirming metabolite loss during handling. Each metabolite was found at a level less than 0.1% of the doxorubicin content in either method, suggesting a slow metabolism in the NS-1 cell system or effective removal of metabolites by the cell.  相似文献   
108.
Protective potency of oil-treated cell walls of various mycobacteria against airborne infection of mice with a few cells of Mycobacterium tuberculosis H37Rv was compared with that of viable BCG. Although less potent than BCG cell walls, the cell walls of atypical mycobacteria of Runyon's groups I to IV protected against challenge by aerosol to some degree. Protection afforded by cell walls of H37Rv and of the avirulent mutants H37Ra and Washington II was comparable to that provided by BCG cell walls. However, cell walls of a highly virulent strain of M. bovis (Bovinus I) provided the best protection yet achieved. Present evidence suggests that protective substances are shared by all mycobacteria but in differing amounts; the relationship between virulence and immunogenicity has yet to be clarified.  相似文献   
109.
Sphingolipid synthesis is tightly regulated in eukaryotes. This regulation in plants ensures sufficient sphingolipids to support growth while limiting the accumulation of sphingolipid metabolites that induce programmed cell death. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is considered the primary sphingolipid homeostatic regulatory point. In this report, Arabidopsis (Arabidopsis thaliana) putative SPT regulatory proteins, orosomucoid-like proteins AtORM1 and AtORM2, were found to interact physically with Arabidopsis SPT and to suppress SPT activity when coexpressed with Arabidopsis SPT subunits long-chain base1 (LCB1) and LCB2 and the small subunit of SPT in a yeast (Saccharomyces cerevisiae) SPT-deficient mutant. Consistent with a role in SPT suppression, AtORM1 and AtORM2 overexpression lines displayed increased resistance to the programmed cell death-inducing mycotoxin fumonisin B1, with an accompanying reduced accumulation of LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Conversely, RNA interference (RNAi) suppression lines of AtORM1 and AtORM2 displayed increased sensitivity to fumonisin B1 and an accompanying strong increase in LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Overexpression lines also were found to have reduced activity of the class I ceramide synthase that uses C16 fatty acid acyl-coenzyme A and dihydroxy LCB substrates but increased activity of class II ceramide synthases that use very-long-chain fatty acyl-coenzyme A and trihydroxy LCB substrates. RNAi suppression lines, in contrast, displayed increased class I ceramide synthase activity but reduced class II ceramide synthase activity. These findings indicate that ORM mediation of SPT activity differentially regulates functionally distinct ceramide synthase activities as part of a broader sphingolipid homeostatic regulatory network.Sphingolipids play critical roles in plant growth and development as essential components of endomembranes, including the plasma membrane, where they constitute more than 40% of the total lipid (Sperling et al., 2005; Cacas et al., 2016). Sphingolipids also are highly enriched in detergent-insoluble membrane fractions of the plasma membrane that form microdomains for proteins with important cell surface activities, including cell wall biosynthesis and hormone transport (Cacas et al., 2012, 2016; Perraki et al., 2012; Bayer et al., 2014). In addition, sphingolipids, particularly those with very-long-chain fatty acids (VLCFAs), are integrally associated with Golgi-mediated protein trafficking that underlies processes related to the growth of plant cells (Bach et al., 2008, 2011; Markham et al., 2011; Melser et al., 2011). Furthermore, sphingolipids function through their bioactive long-chain base (LCB) and ceramide metabolites to initiate programmed cell death (PCD), important for mediating plant pathogen resistance through the hypersensitive response (Greenberg et al., 2000; Liang et al., 2003; Shi et al., 2007; Bi et al., 2014; Simanshu et al., 2014).Sphingolipid biosynthesis is highly regulated in all eukaryotes. In plants, the maintenance of sphingolipid homeostasis is vital to ensure sufficient sphingolipids for growth (Chen et al., 2006; Kimberlin et al., 2013) while restricting the accumulation of PCD-inducing ceramides and LCBs until required for processes such as the pathogen-triggered hypersensitive response. Serine palmitoyltransferase (SPT), which catalyzes the first step in LCB synthesis, is generally believed to be the primary control point for sphingolipid homeostasis (Hanada, 2003). SPT synthesizes LCBs, unique components of sphingolipids, by catalyzing a pyridoxal phosphate-dependent condensation of Ser and palmitoyl (16:0)-CoA in plants (Markham et al., 2013). Similar to other eukaryotes, the Arabidopsis (Arabidopsis thaliana) SPT is a heterodimer consisting of LCB1 and LCB2 subunits (Chen et al., 2006; Dietrich et al., 2008; Teng et al., 2008). Research to date has shown that SPT is regulated primarily by posttranslational mechanisms involving physical interactions with noncatalytic, membrane-associated proteins that confer positive and negative regulation of SPT activity (Han et al., 2009, 2010; Breslow et al., 2010). These proteins include a 56-amino acid small subunit of SPT (ssSPT) in Arabidopsis, which was recently shown to stimulate SPT activity and to be essential for generating sufficient amounts of sphingolipids for pollen and sporophytic cell viability (Kimberlin et al., 2013).Evidence from yeast and mammalian research points to a more critical role for proteins termed ORMs (for orosomucoid-like proteins) in sphingolipid homeostatic regulation (Breslow et al., 2010; Han et al., 2010). The Saccharomyces cerevisiae Orm1p and Orm2p negatively regulate SPT through reversible phosphorylation of these polypeptides in response to intracellular sphingolipid levels (Breslow et al., 2010; Han et al., 2010; Roelants et al., 2011; Gururaj et al., 2013; Muir et al., 2014). Phosphorylation/dephosphorylation of ORMs in S. cerevisiae presumably affects the higher order assembly of SPT to mediate flux through this enzyme for LCB synthesis (Breslow, 2013). In this sphingolipid homeostatic regulatory mechanism, the S. cerevisiae Orm1p and Orm2p are phosphorylated at their N termini by Ypk1, a TORC2-dependent protein kinase (Han et al., 2010; Roelants et al., 2011). The absence of this phosphorylation domain in mammalian and plant ORM homologs brings into question the nature of SPT reversible regulation by ORMs in other eukaryotic systems (Hjelmqvist et al., 2002).Sphingolipid synthesis also is mediated by the N-acylation of LCBs by ceramide synthases to form ceramides, the hydrophobic backbone of the major plant glycosphingolipids, glucosylceramide (GlcCer) and glycosyl inositolphosphoceramide (GIPC). Two functionally distinct classes of ceramide synthases occur in Arabidopsis, designated class I and class II (Chen et al., 2008). Class I ceramide synthase activity resulting from the Longevity Assurance Gene One Homolog2 (LOH2)-encoded ceramide synthase acylates, almost exclusively, LCBs containing two hydroxyl groups (dihydroxy LCBs) with 16:0-CoA to form C16 ceramides, which are used primarily for GlcCer synthesis (Markham et al., 2011; Ternes et al., 2011; Luttgeharm et al., 2016). Class II ceramide synthase activities resulting from the LOH1- and LOH3-encoded ceramide synthases are most active in the acylation of LCBs containing three hydroxyl groups (trihydroxy LCBs) with VLCFA-CoAs, including primarily C24 and C26 acyl-CoAs (Markham et al., 2011; Ternes et al., 2011; Luttgeharm et al., 2016). Class II (LOH1 and LOH3) ceramide synthase activity is essential for producing VLCFA-containing glycosphingolipids to support the growth of plant cells, whereas class I (LOH2) ceramide synthase activity is nonessential under normal growth conditions (Markham et al., 2011; Luttgeharm et al., 2015b). It was speculated recently that LOH2 ceramide synthase functions, in part, as a safety valve to acylate excess LCBs for glycosylation, resulting in a less cytotoxic form (Luttgeharm et al., 2015b; Msanne et al., 2015). Recent studies have shown that the Lag1/Lac1 components of the S. cerevisiae ceramide synthase are phosphorylated by Ypk1, and this phosphorylation stimulates ceramide synthase activity in response to heat and reduced intracellular sphingolipid levels (Muir et al., 2014). This finding points to possible coordinated regulation of ORM-mediated SPT and ceramide synthase activities to regulate sphingolipid homeostasis, which is likely more complicated in plants and mammals due to the occurrence of functionally distinct ceramide synthases in these systems (Stiban et al., 2010; Markham et al., 2011; Ternes et al., 2011; Luttgeharm et al., 2016).RNA interference (RNAi) suppression of ORM genes in rice (Oryza sativa) has been shown to affect pollen viability (Chueasiri et al., 2014), but no mechanistic characterization of ORM proteins in plants has yet to be reported. Here, we describe two Arabidopsis ORMs, AtORM1 and AtORM2, that suppress SPT activity through direct interaction with the LCB1/LCB2 heterodimer. We also show that strong up-regulation of AtORM expression impairs growth. In addition, up- or down-regulation of ORMs is shown to differentially affect the sensitivity of Arabidopsis to the PCD-inducing mycotoxin fumonisin B1 (FB1), a ceramide synthase inhibitor, and to differentially affect the activities of class I and II ceramide synthases as a possible additional mechanism for regulating sphingolipid homeostasis.  相似文献   
110.
The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, involved in mitosis, is upregulated in cervical cancer (CC). We investigated CDKN3 mRNA as a survival biomarker and potential therapeutic target for CC. CDKN3 mRNA was measured in 134 CC and 25 controls by quantitative PCR. A 5-year survival study was conducted in 121 of these CC patients. Furthermore, CDKN3-specific siRNAs were used to investigate whether CDKN3 is involved in proliferation, migration, and invasion in CC-derived cell lines (SiHa, CaSki, HeLa). CDKN3 mRNA was on average 6.4-fold higher in tumors than in controls (p = 8 x 10−6, Mann-Whitney). A total of 68.2% of CC patients over expressing CDKN3 gene (fold change ≥ 17) died within two years of diagnosis, independent of the clinical stage and HPV type (Hazard Ratio = 5.0, 95% CI: 2.5–10, p = 3.3 x 10−6, Cox proportional-hazards regression). In contrast, only 19.2% of the patients with lower CDKN3 expression died in the same period. In vitro inactivation of CDKN3 decreased cell proliferation on average 67%, although it had no effect on cell migration and invasion. CDKN3 mRNA may be a good survival biomarker and potential therapeutic target in CC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号