首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2391篇
  免费   212篇
  2022年   26篇
  2021年   64篇
  2020年   44篇
  2019年   42篇
  2018年   47篇
  2017年   41篇
  2016年   49篇
  2015年   117篇
  2014年   111篇
  2013年   120篇
  2012年   144篇
  2011年   169篇
  2010年   101篇
  2009年   77篇
  2008年   104篇
  2007年   136篇
  2006年   102篇
  2005年   99篇
  2004年   91篇
  2003年   86篇
  2002年   82篇
  2001年   35篇
  2000年   30篇
  1999年   22篇
  1998年   24篇
  1997年   19篇
  1996年   14篇
  1995年   15篇
  1994年   12篇
  1992年   17篇
  1991年   18篇
  1990年   19篇
  1989年   24篇
  1988年   13篇
  1987年   11篇
  1986年   17篇
  1984年   16篇
  1983年   16篇
  1982年   19篇
  1981年   13篇
  1979年   16篇
  1978年   14篇
  1977年   12篇
  1976年   19篇
  1974年   16篇
  1973年   11篇
  1968年   11篇
  1964年   14篇
  1963年   10篇
  1962年   11篇
排序方式: 共有2603条查询结果,搜索用时 953 毫秒
61.
62.
63.
Recently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S. chrysanthemifolius, which grow at high and low elevations, respectively, on Mount Etna, Sicily and form a hybrid zone at intermediate elevations. We used a newly generated genome‐wide single nucleotide polymorphism (SNP) dataset from 192 individuals collected over 18 localities along an elevational gradient to reconstruct the likely history of speciation, identify highly differentiated SNPs, and estimate the strength of divergent selection. We found that speciation in this system involved heterogeneous and bidirectional gene flow along the genome, and species experienced marked population size changes in the past. Furthermore, we identified highly‐differentiated SNPs between the species, some of which are located in genes potentially involved in ecological differences between species (such as photosynthesis and UV response). We analysed the shape of these SNPs’ allele frequency clines along the elevational gradient. These clines show significantly variable coincidence and concordance, indicative of the presence of multifarious selective forces. Selection against hybrids is estimated to be very strong (0.16–0.78) and one of the highest reported in literature. The combination of strong cumulative selection across the genome and previously identified intrinsic incompatibilities probably work together to maintain the genetic and phenotypic differentiation between these species – pointing to the importance of considering both intrinsic and extrinsic factors when studying divergence and speciation.  相似文献   
64.
65.
The aim of this study is to provide preliminary observations on the microanatomy of Rhincodon typus skin using histology and electron microscopy analyses. Skin biopsies were obtained from a deceased juvenile male shark (548 cm total length) stranded in La Paz, Mexico, during February 2018. The results of this study evidenced the basic structure of the dermal denticles in the epidermis of the trunk of the shark, as well as the composition of the connective tissue in the hypodermis. Histological images of the hypodermis showed a high concentration of collagen fibres, formed by a large number of fine and wavy fibres of compact shape and little intercellular substance.  相似文献   
66.
Cabo Pulmo National Park was established in 1995 and has since seen a large increase in fish biomass. An unoccupied aerial vehicle (UAV) was used to survey shallow coastal habitat in which lemon sharks (Negaprion brevirostris), bull sharks (Carcharhinus leucas) and Pacific nurse sharks (Ginglymostoma unami) were recorded. Sharks were more common in the afternoon, potentially using warmer shallow areas to behaviourally thermoregulate. This study highlights UAV surveying to be a viable tool for species identification, a limitation of previous terrestrial surveys conducted in the area.  相似文献   
67.
Changes in invertebrate body size-distributions that follow loss of habitat-forming species can potentially affect a range of ecological processes, including predation and competition. In the marine environment, small crustaceans and other mobile invertebrates (‘epifauna') represent a basal component in reef food webs, with a pivotal secondary production role that is strongly influenced by their body size-distribution. Ongoing degradation of reef habitats that affect invertebrate size-distributions, particularly transformation of coral and kelp habitat to algal turf, may thus fundamentally affect secondary production. Here we explored variation in size spectra of shallow epifaunal assemblages (i.e. the slope and intercept of the linear relationship between log abundance and body size at the assemblage level) across 21 reef microhabitats distributed along an extensive eastern Australian climatic gradient from the tropical northern Great Barrier Reef to cool temperate Tasmania. When aggregated across microhabitats at the site scale, invertebrate body size spectra (0.125–8 mm range) were consistently log-linear (R2 ranging 0.87–0.98). Size spectra differed between, but not within, major groups of microhabitats, and exhibited little variability between tropical and temperate biomes. Nevertheless, size spectra showed significant tropical/temperate differences in slopes for epifauna sampled on macroalgal habitats, and in elevation for soft coral and sponge habitats. Our results reveal epifaunal size spectra to be a highly predictable macro-ecological feature. Given that variation in epifaunal size spectra among groups of microhabitats was greater than variation between tropical and temperate biomes, we postulate that ocean warming will not greatly alter epifaunal size spectra directly. However, transformation of tropical coral and temperate macroalgal habitats to algal turfs due to warming will alter reef food web dynamics through redistribution of the size of prey available to fishes.  相似文献   
68.
Virus detection methods are important to cope with the SARS-CoV-2 pandemics. Apart from the lung, SARS-CoV-2 was detected in multiple organs in severe cases. Less is known on organ tropism in patients developing mild or no symptoms, and some of such patients might be missed in symptom-indicated swab testing. Here, we tested and validated several approaches and selected the most reliable RT-PCR protocol for the detection of SARS-CoV-2 RNA in patients’ routine diagnostic formalin-fixed and paraffin-embedded (FFPE) specimens available in pathology, to assess (i) organ tropism in samples from COVID-19-positive patients, (ii) unrecognized cases in selected tissues from negative or not-tested patients during a pandemic peak, and (iii) retrospectively, pre-pandemic lung samples. We identified SARS-CoV-2 RNA in seven samples from confirmed COVID-19 patients, in two gastric biopsies, one small bowel and one colon resection, one lung biopsy, one pleural resection and one pleural effusion specimen, while all other specimens were negative. In the pandemic peak cohort, we identified one previously unrecognized COVID-19 case in tonsillectomy samples. All pre-pandemic lung samples were negative. In conclusion, SARS-CoV-2 RNA detection in FFPE pathology specimens can potentially improve surveillance of COVID-19, allow retrospective studies, and advance our understanding of SARS-CoV-2 organ tropism and effects.  相似文献   
69.
Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号