首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   8篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
41.

Introduction

The aim of this study was to investigate PD-1/PD-L1 involvement in the hyporesponsiveness of rheumatoid arthritis (RA) synovial fluid (SF) CD4 T cells upon stimulation by thymic stromal lymphopoietin (TSLP)–primed CD1c myeloid dendritic cells (mDCs).

Methods

Expression of PD-1 on naïve (Tn), central memory (Tcm) and effector memory (Tem) CD4 T cell subsets was assessed by flow cytometry. PD-L1 expression and its regulation upon TSLP stimulation of mDCs from peripheral blood (PB) and SF of RA patients were investigated by quantitative RT-PCR and flow cytometry. The involvement of PD-1/PD-L1 interactions in SF T cell hyporesponsiveness upon (TSLP-primed) mDC activation was determined by cell culture in the presence of PD-1 blocking antibodies, with or without interleukin 7 (IL-7) as a recognized suppressor of PD-1 expression.

Results

PD-1 expression was increased on CD4 T cells derived from SF compared with PB of RA patients. TSLP increased PD-L1 mRNA expression in both PB and SF mDCs. PD-L1 protein expression was increased on SF mDCs compared with PB mDCs and was associated with T cell hyporesponsiveness. Blockade of PD-1, as well as IL-7 stimulation, during cocultures of memory T cells and (TSLP-primed) mDCs from RA patients significantly recovered T cell proliferation.

Conclusion

SF T cell hyporesponsiveness upon (TSLP-primed) mDC stimulation in RA joints is partially dependent on PD-1/PD-L1 interactions, as PD-1 and PD-L1 are both highly expressed on SF T cells and mDCs, respectively, and inhibiting PD-1 availability restores T cell proliferation. The potential of IL-7 to robustly reverse this hyporesponsiveness suggests that such proinflammatory cytokines in RA joints strongly contribute to memory T cell activation.  相似文献   
42.
43.
44.
To examine the role of the estrogen receptor-alpha (ERalpha) during male skeletal development, bone density and structure of aged ERalphaKO mice and wild-type (WT) littermates were analyzed and skeletal changes in response to sex steroid deficiency and replacement were also studied. In comparison to WT, ERalphaKO mice had smaller and thinner bones, arguing for a direct role of ERalpha to obtain full skeletal size in male mice. However, male ERalphaKO mice had significantly more trabecular bone as assessed both by pQCT and histomorphometry, indicating that ERalpha is not essential to maintain cancellous bone mass. Six weeks following orchidectomy (ORX), both WT and ERalphaKO mice showed high-turnover osteoporosis as revealed by increases in serum osteocalcin and decreases in trabecular (-38% and -58% in WT and ERalphaKO, respectively) and cortical bone density (-5% and -4% in WT and ERalphaKO, respectively). Administration of testosterone propionate (T, 5 mg/kg/day) completely prevented bone loss both in ERalphaKO and in WT mice. As expected, estradiol (E2, 60 microg/kg/day) replacement did not prevent cancellous bone loss in ORX ERalphaKO mice. However, E2 stimulated bone formation at the endocortical surface in ORX ERalphaKO, suggesting that osteoblasts may respond to nonERalpha-mediated estrogen action. In conclusion, although functional ERalpha may play a significant role during male skeletal development, this receptor does not seem essential for androgen-mediated skeletal maintenance in older male mice.  相似文献   
45.
The nucleotide sequences corresponding to bovine alpha S2- and beta- casein mRNAs have been determined by cDNA analysis. Both sequences appear to be complete at their 5' ends. The nucleotide sequence of alpha S2-casein, when compared with the corresponding cavine A sequence, helps to define the boundaries of a large amino acid repeat (approximately 80 residues) whereas comparisons with the nucleotide sequences of rat gamma- and mouse epsilon-casein mRNAs also reveal extensive sequence similarities. An alignment of these four sequences shows that the divergence of their translated regions has been characterized by the duplication and deletion of discrete segments of sequence that probably correspond to exons. A high degree of nucleotide substitution is also found when the four sequences are compared, except for well-conserved leader-peptide and phosphorylation-site sequences and, to a lesser extent, the 5'-untranslated regions. Similar comparison of the bovine and rat beta-caseins shows that their divergence has involved a high rate of nucleotide substitution but that no major insertions or deletions of sequence have occurred. The several splice sites that have veen defined in the rat beta-casein gene are likely to have been conserved in the bovine. The contrasting evolutionary histories of the alpha- and beta-casein coding sequences correlate with the distinctive functions of these proteins in the casein micelle system in milk.   相似文献   
46.
Subcellular fractionation of rabbit pancreatic acini was performed to study the distribution of endogenous substrates for protein kinase C. Substrates for protein kinase C were found to be predominantly low molecular mass proteins of cytosolic origin. At least three of these soluble substrates, with molecular masses of 17-19 kDa, were relatively heavily phosphorylated by endogenous as well as purified pancreatic protein kinase C. In the same molecular mass range, 16-18 kDa, soluble proteins were also phosphorylated by protein kinase A. Moreover, addition of cyclic AMP under conditions that activated protein kinase C gave a more than additive labelling of these low molecular mass proteins. The latter observation may be of interest in view of the potentiating effect cyclic-AMP-activated protein kinase A has on amylase secretion stimulated by secretagogues which increase free cytosolic Ca2+ and activate protein kinase C.  相似文献   
47.
Murine zymosan-induced peritonitis is a widely used model for studying the molecular and cellular events responsible for the initiation, persistence and/or resolution of inflammation. Among these events, it is becoming increasingly evident that changes in glycosylation of proteins, especially in the plasma and at the site of inflammation, play an important role in the inflammatory response. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based glycosylation profiling, we investigated the qualitative and quantitative effect of zymosan-induced peritonitis on N-glycosylation in mouse plasma and peritoneal fluid. Our results show that both N-glycomes exhibit highly similar glycosylation patterns, consisting mainly of diantennary and triantennary complex type N-glycans with high levels (>95 %) of galactosylation and sialylation (mostly NeuGc) and a medium degree of core fucosylation (30 %). Moreover, MS/MS structural analysis, assisted by linkage-specific derivatization of sialic acids, revealed the presence of O-acetylated sialic acids as well as disialylated antennae (“branching sialylation”) characterized by the presence of α2-6-linked NeuGc on the GlcNAc of the NeuGcα2-3-Galβ1-3-GlcNAc terminal motif. A significant decrease of (core) fucosylation together with an increase of both α2-3-linked NeuGc and “branching sialylation” were observed in N-glycomes of mice challenged with zymosan, but not in control mice injected with PBS. Importantly, substantial changes in glycosylation were already observed 12 h after induction of peritonitis, thereby demonstrating an unexpected velocity of the biological mechanisms involved.  相似文献   
48.

Background

Little is known about enzymatic N-glycosylation in type 2 diabetes, a common posttranslational modification of proteins influencing their function and integrating genetic and environmental influences. We sought to gain insights into N-glycosylation to uncover yet unexplored pathophysiological mechanisms in type 2 diabetes.

Methods

Using a high-throughput MALDI-TOF mass spectrometry method, we measured N-glycans in plasma samples of the DiaGene case-control study (1583 cases and 728 controls). Associations were investigated with logistic regression and adjusted for age, sex, body mass index, high-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol, and smoking. Findings were replicated in a nested replication cohort of 232 cases and 108 controls.

Results

Eighteen glycosylation features were significantly associated with type 2 diabetes. Fucosylation and bisection of diantennary glycans were decreased in diabetes (odds ratio (OR)?=?0.81, p?=?1.26E-03, and OR?=?0.87, p?=?2.84E-02, respectively), whereas total and, specifically, alpha2,6-linked sialylation were increased (OR?=?1.38, p?=?9.92E-07, and OR?=?1.40, p?=?5.48E-07). Alpha2,3-linked sialylation of triantennary glycans was decreased (OR?=?0.60, p?=?6.38E-11).

Conclusions

While some glycosylation changes were reflective of inflammation, such as increased alpha2,6-linked sialylation, our finding of decreased alpha2,3-linked sialylation in type 2 diabetes patients is contradictory to reports on acute and chronic inflammation. Thus, it might have previously unreported immunological implications in type 2 diabetes.

General significance

This study provides new insights into N-glycosylation patterns in type 2 diabetes, which can fuel studies on causal mechanisms and consequences of this complex disease.  相似文献   
49.
During meiosis, recombination ensures allelic exchanges through crossovers (COs) between the homologous chromosomes. Advances in our understanding of the rules of COs have come from studies of mutations including structural chromosomal rearrangements that, when heterozygous, are known to impair COs in various organisms. In this work, we investigate the effect of a large heterozygous pericentric inversion on male and female recombination in Arabidopsis. The inversion was discovered in the Atmcc1 mutant background and was characterized through genetic and next‐generation sequencing analysis. Reciprocal backcross populations, each consisting of over 400 individuals, obtained from the mutant and the wild type, both crossed with Landsberg erecta, were analyzed genome‐wide by 143 single‐nucleotide polymorphisms. The negative impact of inversion became evident in terms of CO loss in the rearranged chromosome in both male and female meiosis. No single‐CO event was detected within the inversion, consistent with a post‐meiotic selection operating against unbalanced gametes. Cytological analysis of chiasmata in F1 plants confirmed that COs were reduced in male meiosis in the chromosome with inversion. Crossover suppression on the rearranged chromosome is associated with a significant increase of COs in the other chromosomes, thereby maintaining unchanged the number of COs per cell. The CO pattern observed in our study is consistent with the interchromosomal (IC) effect as first described in Drosophila. In contrast to male meiosis, in female meiosis no IC effect is visible. This may be related to the greater strength of interference that constrains the CO number in excess of the minimum value imposed by CO assurance in Arabidopsis female meiosis.  相似文献   
50.
The propensity to associate or aggregate is one of the characteristic properties of many nonnative proteins. The aggregation of proteins is responsible for a number of human diseases and is a significant problem in biotechnology. Despite this, little is currently known about the effect of self-association on the structural properties and conformational stability of partially folded protein molecules. G-actin is shown to form equilibrium unfolding intermediate in the vicinity of 1.5 M guanidinium chloride (GdmCl). Refolding from the GdmCl unfolded state is terminated at the stage of formation of the same intermediate state. An analogous form, known as inactivated actin, can be obtained by heat treatment, or at moderate urea concentration, or by the release of Ca(2+). In all cases actin forms specific associates comprising partially folded protein molecules. The structural properties and conformational stability of inactivated actin were studied over a wide range of protein concentrations, and it was established that the process of self-association is rather specific. We have also shown that inactivated actin, being denatured, is characterized by a relatively rigid microenvironment of aromatic residues and exhibits a considerable limitation in the internal mobility of tryptophans. This means that specific self-association can play an important structure-forming role for the partially folded protein molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号