首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   14篇
  2022年   1篇
  2021年   6篇
  2020年   6篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   10篇
  2014年   13篇
  2013年   14篇
  2012年   19篇
  2011年   22篇
  2010年   17篇
  2009年   11篇
  2008年   16篇
  2007年   13篇
  2006年   19篇
  2005年   20篇
  2004年   11篇
  2003年   19篇
  2002年   17篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有287条查询结果,搜索用时 31 毫秒
101.
An elegant new study has correlated the generation of sound patterns in the red-bellied piranha (Pygocentrus nattereri) with three distinct behaviours.  相似文献   
102.
The IgE-mediated and Th2-dependent late-phase reaction remains a mechanistically enigmatic and daunting element of human allergic inflammation. In this study, we uncover the FcεRI on dendritic cells (DCs) as a key in vivo component of this form of allergy. Because rodent, unlike human, DCs lack FcεRI, this mechanism could be revealed only by using a new transgenic mouse model with human-like FcεRI expression on DCs. In the presence of IgE and allergen, FcεRI(+) DCs instructed naive T cells to differentiate into Th2 cells in vitro and boosted allergen-specific Th2 responses and Th2-dependent eosinophilia at the site of allergen exposure in vivo. Thus, FcεRI on DCs drives the cascade of pathogenic reactions linking the initial allergen capture by IgE with subsequent Th2-dominated T cell responses and the development of late-phase allergic tissue inflammation.  相似文献   
103.
104.
The bovine seminal plasma protein PDC-109 exerts an essential influence on the sperm cell plasma membrane during capacitation. However, by any mechanism, it has to be ensured that this function of the protein on sperm cells is not initiated too early, that is, upon ejaculation when PDC-109 and sperm cells come into first contact, but rather at later stages of sperm genesis in the female genital tract. To answer the question of whether changes of the bovine sperm lipid composition can modulate the effect of PDC-109 on sperm membranes, we have investigated the influence of PDC-109 on the integrity of (i) differently composed lipid vesicles and of (ii) membranes from human red blood cells and bovine spermatozoa. PDC-109 most effectively disturbed lipid membranes composed of choline-containing phospholipids and in the absence of cholesterol. The impact of the protein on lipid vesicles was attenuated in the presence of cholesterol or of noncholine-containing phospholipids, such as phosphatidylethanolamine or phosphatidylserine. An extraction of cholesterol from lipid or biological membranes using methyl-beta-cyclodextrin caused an increased membrane perturbation by PDC-109. Our results argue for a oppositional effect of PDC-109 during sperm cell genesis. We hypothesize that the lipid composition of ejaculated bull sperm cells allows a binding of PDC-109 without leading to an impairment of the plasma membrane. At later stages of sperm cell genesis upon release of cholesterol from sperm membranes, PDC-109 triggers a destabilization of the cells.  相似文献   
105.
The matrix protein M1 plays a pivotal role in the budding of influenza virus from the plasma membrane (PM) of infected cells. This protein interacts with viral genetic material and envelope proteins while binding to the inner leaflet of the PM. Its oligomerization is therefore closely connected to the assembly of viral components and the formation of new virions. Of interest, the molecular details of M1 interaction with lipids and other viral proteins are far from being understood, and it remains to be determined whether the multimerization of M1 is affected by its binding to the PM and interaction with its components. To clarify the connection between M1 oligomerization and binding to lipid membranes, we applied a combination of several quantitative microscopy approaches. First, we used number and brightness (N&B) microscopy to characterize protein multimerization upon interaction with the PM of living cells. Second, we used controlled biophysical models of the PM (i.e., supported bilayers) to delve into the details of M1-lipid and M1-M1 interactions by employing a combination of raster image correlation spectroscopy (RICS), fluorescence correlation spectroscopy (FCS), and atomic force microscopy (AFM). Our results show that M1 oligomer formation is strongly enhanced by membrane binding and does not necessarily require the presence of other viral proteins. Furthermore, we propose a specific model to explain M1 binding to the lipid bilayer and the formation of multimers.  相似文献   
106.
107.
Actin dimer cross-linked along the long pitch of the F-actin helix by N-(4-azido)-2-nitrophenyl (ANP) was purified by gel filtration. Purified dimers were found to polymerize on increasing the ionic strength, although at reduced rate and extent in comparison with native actin. Purified actin dimer interacts with the actin-binding proteins (ABPs) deoxyribonuclease I (DNase I) and gelsolin segment-1 (G1) as analyzed by gel filtration and native gel electrophoresis. Complex formation of the actin dimer with these ABPs inhibits its ability to polymerize. The interaction with rabbit skeletal muscle myosin subfragment 1 (S1) was analyzed for polymerized actin dimer and dimer complexed with gelsolin segment 1 or DNase I by measurement of the actin-stimulated myosin S1-ATPase and gel filtration. The data obtained indicate binding of subfragment 1 to actin dimer, albeit with considerably lower affinity than to F-actin. Polymerized actin dimer was able to stimulate the S1-ATPase activity to about 50% of the level of native F-actin. In contrast, the actin dimer complexed to DNase I or gelsolin segment 1 or to both proteins was unable to significantly stimulate the S1-ATPase. Similarly, G1:dimer complex at 20 microM stimulated the rate of release of subfragment 1 bound nucleotide (mant-ADP) only 1.6-fold in comparison to about 9-fold by native F-actin at a concentration of 0.5 microM. Using rapid kinetic techniques, a dissociation constant of 2.4 x 10 (-6) M for subfragment 1 binding to G1:dimer was determined in comparison to 3 x 10 (-8) M for native F-actin under identical conditions. Since the rate of association of subfragment 1 to G1:dimer was considerably lower than to native F-actin, we suspect that the ATP-hydrolysis by S1 was catalyzed before its association to the dimer. These data suggest an altered, nonproductive mode for the interaction of subfragment 1 with the isolated long-pitch actin dimer.  相似文献   
108.
The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.  相似文献   
109.
Drug discovery usually focuses on candidate molecules that affect individual reactions with presumed essential functions in the cellular reaction network, especially in the development of diseases. Unfortunately, appropriately designed drugs often fail to show the expected biological effect, since the multitude of interactions in the biochemical reaction network buffers the individual changes or causes significant side effects. We address this problem through a computational approach, which considers the effect of drug application within a generalized biochemical pathway and by studying the effect of changes regarding the type and strength of inhibitors on the reduction of flux. This allows us to systematically search for the appropriate target and for type and concentration of the optimal inhibitor. We propose the flux selectivity as a measure for the discrimination of the effect on different pathways. Since the calculation of the flux selectivity is based on flux control coefficients that are calculated in the non-affected state, it is also a means for predicting the inhibitor efficacy. Furthermore, we will propose how to increase discriminative inhibition in the case of a parasitic disease by using multi-target drugs.This work is devoted to the memorial of our teacher Reinhart Heinrich, who made important contributions to the investigation of the regulation of metabolic networks, namely by introducing and applying the concept of metabolic control.  相似文献   
110.
Qin Y  Polacek N  Vesper O  Staub E  Einfeldt E  Wilson DN  Nierhaus KH 《Cell》2006,127(4):721-733
The ribosomal elongation cycle describes a series of reactions prolonging the nascent polypeptide chain by one amino acid and driven by two universal elongation factors termed EF-Tu and EF-G in bacteria. Here we demonstrate that the extremely conserved LepA protein, present in all bacteria and mitochondria, is a third elongation factor required for accurate and efficient protein synthesis. LepA has the unique function of back-translocating posttranslocational ribosomes, and the results suggest that it recognizes ribosomes after a defective translocation reaction and induces a back-translocation, thus giving EF-G a second chance to translocate the tRNAs correctly. We suggest renaming LepA as elongation factor 4 (EF4).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号