首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   17篇
  2022年   1篇
  2021年   7篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   14篇
  2014年   14篇
  2013年   15篇
  2012年   19篇
  2011年   22篇
  2010年   21篇
  2009年   12篇
  2008年   18篇
  2007年   16篇
  2006年   22篇
  2005年   22篇
  2004年   15篇
  2003年   20篇
  2002年   19篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
  1958年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
141.
BACKGROUND: Perfluorooctane sulfonate (PFOS), found widely in wildlife and humans, is environmentally and metabolically stable. Environmental PFOS may be from its use as a surfactant, hydrolysis of perfluorooctanesulfonyl fluoride, and degradation of N-alkyl-perfluorooctanesulfonamide compounds formerly used in numerous applications. Prenatal exposure to PFOS in rodents causes neonatal mortality; treatment on gestation days (GD) 19-20 is sufficient to induce neonatal death in rats. Affected pups are born alive but present with labored breathing. Their lungs are pale and often do not expand fully on perfusion. METHODS: Pregnant Sprague-Dawley rats received 0, 25, or 50 mg/kg/day PFOS/K+ orally on GD 19-20. Lungs from GD 21 fetuses and neonates were prepared for histology and morphometry. Rescue experiments included co-administration of dexamethasone or retinyl palmitate with PFOS. Pulmonary surfactant was investigated with mass spectrometry in GD 21 amniotic fluid and neonatal lungs. Microarray analysis was carried out on PND 0 lungs. RESULTS: Histologically, alveolar walls were thicker in lungs of PFOS-exposed newborns compared to controls. The ratio of solid tissue:small airway was increased, suggesting immaturity. Rescue studies were ineffective. Phospholipid concentrations and molecular speciation were unaffected by PFOS. No changes in markers of alveolar differentiation were detected by microarray analysis. CONCLUSIONS: Morphometric changes in lungs of PFOS exposed neonates were suggestive of immaturity, but the failure of rescue agents and normal pulmonary surfactant profile indicate that the labored respiration and mortality observed in PFOS-treated neonates was not due to lung immaturity.  相似文献   
142.
143.
144.
The purpose of this study was to examine changes in fatty acyl chain composition of major cardiac phospholipids in relation to down-regulation of -adrenoceptors during various forms of stress or chronic adrenergic stimulation. Analysis of the fatty acid profile of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in sarcolemma or cardiac muscle membranes showed partial replacement of 18:2n-6 by 20:4n-6 in PC and replacement of both 18:2n-6 and 20:4n-6 by 22:6n-3 in PE during daily administration of epinephrine or norepinephrine for 7 or 15 days, respectively These changes in membrane PC and PE coincided with down-regulation or the decrease in Bmax of -adrenoceptors during adrenergic stimulation. Cardiac membrane response to other forms of stress or chronic adrenergic stimulation such as neonatal stress, restriction stress or restricted food intake was expressed in the same way, that is replacement of 18:2n-6 by 20:4n-6 in PC and replacement of 18:2n-6 and 20:4n-6 by 22:6n-3 in PE.Conclusion: Adaptation to stress includes a decrease in the density of binding sites or down-regulation of -adrenoceptors in sarcolemma synchronized with specific alterations in the fatty acyl chain composition within the membrane bilayer. The changes in the lipid milieu of the membrane may facilitate conformational changes in the transmembrane segment of the receptor forming the ligand binding sites of the -adrenoceptor.  相似文献   
145.
146.
Transmembrane proteins (TMPs) are important drug targets because they are essential for signaling, regulation, and transport. Despite important breakthroughs, experimental structure determination remains challenging for TMPs. Various methods have bridged the gap by predicting transmembrane helices (TMHs), but room for improvement remains. Here, we present TMSEG, a novel method identifying TMPs and accurately predicting their TMHs and their topology. The method combines machine learning with empirical filters. Testing it on a non‐redundant dataset of 41 TMPs and 285 soluble proteins, and applying strict performance measures, TMSEG outperformed the state‐of‐the‐art in our hands. TMSEG correctly distinguished helical TMPs from other proteins with a sensitivity of 98 ± 2% and a false positive rate as low as 3 ± 1%. Individual TMHs were predicted with a precision of 87 ± 3% and recall of 84 ± 3%. Furthermore, in 63 ± 6% of helical TMPs the placement of all TMHs and their inside/outside topology was correctly predicted. There are two main features that distinguish TMSEG from other methods. First, the errors in finding all helical TMPs in an organism are significantly reduced. For example, in human this leads to 200 and 1600 fewer misclassifications compared to the second and third best method available, and 4400 fewer mistakes than by a simple hydrophobicity‐based method. Second, TMSEG provides an add‐on improvement for any existing method to benefit from. Proteins 2016; 84:1706–1716. © 2016 Wiley Periodicals, Inc.  相似文献   
147.
Screening for the plasmid content of 94 strains belonging to ten species of thermophilic bacilli mainly referred toBacillus stearothermophilus was carried out. Twenty-seven of the strains tested were found to harbor one or more plasmids ranging in size from 1.7 to>50 kb. The physical map of the smallest plasmid, pBC1, is reported. Southern hybridization experiments showed that pBC1 hybridized strongly with the other small plasmids, weakly with medium-sized plasmids, and not at all with the largest plasmids and chromosomal DNA. pBC1 was cloned into pHV14 and pJH101 vectors, and the chimeric plasmids obtained were used to transformEscherichia coli andBacillus subtilis.  相似文献   
148.
  1. Climate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.
  2. The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above‐average temperatures since the mid‐2000s with divergent bottom temperature trends at subregional scales.
  3. Concurrently, the Barents Sea stock of Atlantic cod Gadus morhua, one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.
  4. We examined the influence of food availability and temperature on cod expansion using a comprehensive data set on cod stomach fullness stratified by subregions characterized by divergent temperature trends. We then tested whether food availability, as indexed by cod stomach fullness, played a role in cod expansion in subregions that were warming, cooling, or showed no trend.
  5. The greatest increase in cod occupancy occurred in three northern subregions with contrasting temperature trends. Cod apparently benefited from initial high food availability in these regions that previously had few large‐bodied fish predators.
  6. The stomach fullness in the northern subregions declined rapidly after a few years of high cod abundance, suggesting that the arrival of cod caused a top‐down effect on the prey base. Prolonged cod residency in the northern Barents Sea is, therefore, not a certainty.
  相似文献   
149.
Maintenance of cellular size is a fundamental systems level process that requires balancing of cell growth with proliferation. This is achieved via the cell division cycle, which is driven by the sequential accumulation and destruction of cyclins. The regulatory network around these cyclins, particularly in G1, has been interpreted as a size control network in budding yeast, and cell size as being decisive for the START transition. However, it is not clear why disruptions in the G1 network may lead to altered size rather than loss of size control, or why the S-G2-M duration also depends on nutrients. With a mathematical population model comprised of individually growing cells, we show that cyclin translation would suffice to explain the observed growth rate dependence of cell volume at START. Moreover, we assess the impact of the observed bud-localisation of the G2 cyclin CLB2 mRNA, and find that localised cyclin translation could provide an efficient mechanism for measuring the biosynthetic capacity in specific compartments: The mother in G1, and the growing bud in G2. Hence, iteration of the same principle can ensure that the mother cell is strong enough to grow a bud, and that the bud is strong enough for independent life. Cell sizes emerge in the model, which predicts that a single CDK-cyclin pair per growth phase suffices for size control in budding yeast, despite the necessity of the cell cycle network around the cyclins to integrate other cues. Size control seems to be exerted twice, where the G2/M control affects bud size through bud-localized translation of CLB2 mRNA, explaining the dependence of the S-G2-M duration on nutrients. Taken together, our findings suggest that cell size is an emergent rather than a regulatory property of the network linking growth and proliferation.  相似文献   
150.
Mutations in Interferon Regulatory Factor 6 (IRF6) have been identified in two human allelic syndromes with cleft lip and/or palate: Van der Woude (VWS) and Popliteal Pterygium syndromes (PPS). Furthermore, common IRF6 haplotypes and single nucleotide polymorphisms (SNP) alleles are strongly associated with nonsyndromic clefting defects in multiple ethnic populations. Mutations in the mouse often provide good models for the study of human diseases and developmental processes. We identified the cleft palate 1 (clft1) mouse mutant in a forward genetic screen for phenotypes modeling human congenital disease. In the clft1 mutant, we have identified a novel missense point mutation in the mouse Irf6 gene, which confers an amino acid alteration that has been found in a VWS family. Phenotypic comparison of clft1 mutants to previously reported Irf6 mutant alleles demonstrates the Irf6clft1 allele is a hypomorphic allele. The cleft palate seen in these mutants appears to be due to abnormal adhesion between the palate and tongue. The Irf6clft1 allele provides the first mouse model for the study of an etiologic IRF6 missense mutation observed in a human VWS family. genesis 48:303–308, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号