全文获取类型
收费全文 | 1058篇 |
免费 | 91篇 |
专业分类
1149篇 |
出版年
2022年 | 7篇 |
2021年 | 11篇 |
2020年 | 3篇 |
2019年 | 7篇 |
2018年 | 13篇 |
2017年 | 14篇 |
2016年 | 24篇 |
2015年 | 45篇 |
2014年 | 51篇 |
2013年 | 55篇 |
2012年 | 61篇 |
2011年 | 76篇 |
2010年 | 41篇 |
2009年 | 61篇 |
2008年 | 47篇 |
2007年 | 68篇 |
2006年 | 61篇 |
2005年 | 51篇 |
2004年 | 59篇 |
2003年 | 54篇 |
2002年 | 64篇 |
2001年 | 12篇 |
2000年 | 17篇 |
1999年 | 7篇 |
1998年 | 16篇 |
1997年 | 13篇 |
1996年 | 9篇 |
1995年 | 6篇 |
1994年 | 10篇 |
1993年 | 10篇 |
1992年 | 6篇 |
1991年 | 10篇 |
1990年 | 5篇 |
1989年 | 8篇 |
1988年 | 5篇 |
1987年 | 5篇 |
1985年 | 5篇 |
1984年 | 3篇 |
1982年 | 4篇 |
1981年 | 4篇 |
1980年 | 3篇 |
1979年 | 4篇 |
1914年 | 3篇 |
1908年 | 4篇 |
1888年 | 10篇 |
1887年 | 11篇 |
1886年 | 16篇 |
1885年 | 12篇 |
1884年 | 8篇 |
1858年 | 3篇 |
排序方式: 共有1149条查询结果,搜索用时 15 毫秒
131.
Lindsay S. Garrenton Andreas Braunwarth Stefan Irniger Ed Hurt Markus Künzler Jeremy Thorner 《Molecular and cellular biology》2009,29(2):582-601
Saccharomyces cerevisiae cells are capable of responding to mating pheromone only prior to their exit from the G1 phase of the cell cycle. Ste5 scaffold protein is essential for pheromone response because it couples pheromone receptor stimulation to activation of the appropriate mitogen-activated protein kinase (MAPK) cascade. In naïve cells, Ste5 resides primarily in the nucleus. Upon pheromone treatment, Ste5 is rapidly exported from the nucleus and accumulates at the tip of the mating projection via its association with multiple plasma membrane-localized molecules. We found that concomitant with its nuclear export, the rate of Ste5 turnover is markedly reduced. Preventing nuclear export destabilized Ste5, whereas preventing nuclear entry stabilized Ste5, indicating that Ste5 degradation occurs mainly in the nucleus. This degradation is dependent on ubiquitin and the proteasome. We show that Ste5 ubiquitinylation is mediated by the SCFCdc4 ubiquitin ligase and requires phosphorylation by the G1 cyclin-dependent protein kinase (cdk1). The inability to efficiently degrade Ste5 resulted in pathway activation and cell cycle arrest in the absence of pheromone. These findings reveal that maintenance of this MAPK scaffold at an appropriately low level depends on its compartment-specific and cell cycle-dependent degradation. Overall, this mechanism provides a novel means for helping to prevent inadvertent stimulus-independent activation of a response and for restricting and maximizing the signaling competence of the cell to a specific cell cycle stage, which likely works hand in hand with the demonstrated role that G1 Cdk1-dependent phosphorylation of Ste5 has in preventing its association with the plasma membrane.Scaffold proteins play a pivotal role in spatial and temporal regulation of multitiered mitogen-activated protein kinase (MAPK) cascades (8, 30, 107). Scaffold protein function can be controlled at several different levels, including phosphorylation, oligomerization, and subcellular localization, which can dramatically influence signaling (5, 21, 61).A well-characterized scaffold-dependent MAPK pathway drives the mating pheromone response in budding yeast Saccharomyces cerevisiae (15). The occupancy of a heterotrimeric G-protein-coupled receptor by pheromone results in release of its associated membrane-tethered Gβγ (Ste4-Ste18) complex. Ste5 scaffold protein (917 residues) is recruited to the plasma membrane via its association with this freed Gβγ (106) and by additional multivalent contacts with membrane phospholipids mediated by an N-terminal amphipathic α-helix (PM motif) (111) and an internal PH domain (34). Because Ste5 is also able to bind a MAPK kinase kinase (Ste11), a MAPK kinase (Ste7), and two MAPKs (Fus3 and Kss1) (102), membrane recruitment of Ste5 delivers these components to the plasma membrane. Membrane localization of Ste5 juxtaposes its passenger kinases to Ste20, a p21-activated protein kinase that also interacts with membrane phospholipids (94) and requires plasma membrane-tethered and GTP-loaded Cdc42 for its activation (56, 58, 60). GTP-bound Cdc42 is generated in this vicinity via other Gβγ-recruited effectors, especially Far1, which binds the Cdc42 guanine nucleotide exchange factor, Cdc24 (14, 98). Once activated, Ste20 directly phosphorylates and activates the Ste11 MAPK kinase kinase, triggering the MAPK cascade (24, 114).In naïve haploid cells, Ste5 undergoes continuous nucleocytoplasmic shuttling but is located predominantly in the nucleus (53, 66). In response to pheromone, this flux is dramatically shifted in favor of export, elevating the cytosolic pool of Ste5, thereby raising the number of molecules available for membrane recruitment (66, 79). Pheromone-induced nuclear export of Ste5 requires the exportin, Msn5/Ste21 (66).Little is known about why Ste5 is located in the nucleus in unstimulated cells. It has been suggested that passage of Ste5 through the nucleus modifies it in an as yet undefined manner to make it “competent” to subsequently promote signaling at the membrane (66, 103). However, other evidence indicates that nuclear shuttling of Ste5 is not necessary for its translocation to the plasma membrane or its function (34, 79, 111) and that reimport into the nucleus contributes to pathway downregulation following initial stimulation (53). It has remained obscure, mechanistically speaking, how nuclear localization of Ste5 contributes to the regulation of pathway activation and signal flux.Given that Ste5 is the least abundant component of this entire signaling system (≤500 molecules per haploid cell) (38), we suspected that dynamic regulation of the location and level of this scaffold protein provides a critically important control point for influencing the timing, potency, duration, and specificity of signaling in this pathway. Indeed, as described here, we found that the subcellular localization of Ste5 and cell cycle progression have dramatic effects in controlling the stability of Ste5. Our findings provide new insights about the physiological importance of Ste5 nuclear localization and G1 cyclin-dependent protein kinase 1 (CDK1) action in establishment and maintenance of the conditions that preserve signaling fidelity in this system. 相似文献
132.
Peveler WW Bishop PA Whitehorn EJ 《Journal of strength and conditioning research / National Strength & Conditioning Association》2006,20(3):519-522
The amount of adenosine triphosphate (ATP) stored in the muscle available for immediate use is limited, and once used, must be resynthesized in the muscle. Ribose, a naturally occurring pentose sugar, helps resynthesize ATP for use in muscles. There have been claims that ribose supplements increase ATP levels and improve performance. Other studies have provided mixed results on the effectiveness of ribose as an ergogenic aid at high doses. None of these studies have compared the impact of the recommended dose of ribose on athletes and nonathletes under exercise conditions that are most conducive for effectiveness. The purpose of this study was to evaluate the effectiveness of ribose as an ergogenic aid at the dose recommended for supplements currently on the market during an exercise trial to maximize its efficacy. Male subjects (n = 11) performed 2 trials 1 week apart. Each trial consisted of three 30-second Wingate tests with a 2-minute recovery between each test. Trials were counterbalanced, with 1 trial being performed with 625 mg of ribose and the other with a placebo. Peak power, mean power, and percent decrease in power were recorded during each Wingate test. Repeated-measures analysis of variance (p > 0.05) found no significant differences between ribose and placebo. These results suggest that ribose had no effect on performance when taken orally, at the dose suggested by the distributor. 相似文献
133.
134.
Johnson MS Bolick A Alexander M Huffman D Oborny E Monroe A 《The Journal of parasitology》2012,98(1):111-116
Centrocestus formosanus (Trematoda: Heterophyidae) is an invasive fish parasite in the Comal River, Texas, and is considered a threat to the federally endangered fountain darter, Etheostoma fonticola . Monitoring densities of C. formosanus cercariae is crucial to determining levels of infection pressure. We sampled 3 sites in the Comal River during 2 sampling periods, the first during 2006-2007, and again during 2009-2010. Two of the sites were located in the upstream reach of Landa Lake, sites HS and LA, and the third site was located downstream of Landa Lake in the old channel of the river. Cercariae densities were highest at the downstream most site (EA), followed by sites LA and HS, during both sampling periods, but a significant decline in cercariae density was observed between the first and second sampling periods. Several abiotic factors were monitored, including total stream discharge, wading discharge, temperature, and dissolved oxygen, but no river-wide trends were observed. Therefore, we speculate that these factors do not adequately explain the observed long-term decline in cercariae density. We propose that the decline is simply a reflection of a typical pattern followed by most invasive species as they gradually become integrated into the local community following an initial explosive growth in population size. Although cercariae densities may be abating, fountain darters in the Comal River are still threatened by the parasite, and conservation efforts must focus on reducing levels of infection pressure from the parasite whenever possible. 相似文献
135.
ATP-induced sucrose efflux from red-beet tonoplast vesicles 总被引:2,自引:0,他引:2
Sucrose efflux from the vacuole of mobilizing red-beet (Beta vulgaris L.) hypocotyl cells was investigated using purified tonoplast vesicles. Tonoplast vesicle purity was assured by the immunoreactivity
to antibodies raised against the vacuolar ATPase and by the strong inhibition exhibited by the H+-ATPase to bafilomycin-A and NO3
−. Inhibition of the H+-ATPase by vanadate and azide was negligible. Sucrose was loaded into tonoplast vesicles by using the pH-jump method of energization.
Addition of ATP to sucrose-loaded vesicles in the presence of bafilomycin-A resulted in efflux of a significant amount of
sucrose. During ATP-induced sucrose efflux, bafilomycin-insensitive ATPase activity increased significantly with no increase
in H+-translocating activity. The additional bafilomycin-A insensitive ATPase activity observed in sucrose-loaded vesicles was
completely inhibited by vanadate as was the efflux of sucrose. Similar to vanadate, thapsigargin was also inhibitory to sucrose
efflux and to the bafilomycin-A insensitive ATPase activity. The data indicate that vacuolar sucrose can be actively mobilized
by a specific ATP-dependent efflux mechanism.
Received: 12 October 1999 / Accepted: 18 November 1999 相似文献
136.
Michiel?B?HaesekerEmail author Evelien?Pijpers Nicole?HTM?Dukers-Muijrers Patty?Nelemans Christian?JPA?Hoebe Cathrien?A?Bruggeman Annelies?Verbon Valère?J?Goossens 《Immunity & ageing : I & A》2013,10(1):30
Background
Studies about associations of infections with herpes viruses and other pathogens, such as Chlamydia pneumoniae (CP) and Helicobacter pylori (HP) with cardiovascular disease (CVD), diabetes mellitus (DM), frailty and/or mortality are conflicting. Since high levels of antibodies against these pathogens occur in the elderly, the role of these pathogens in morbidity and mortality of vulnerable elderly was explored.Results
Blood samples of 295 community dwelling psycho-geriatric patients were tested for IgG antibodies to herpes simplex virus type 1 and 2, varicella zoster virus, Epstein Barr virus (EBV), cytomegalovirus (CMV), human herpes virus type 6 (HHV6), CP and HP. Frailty was defined with an easy-to-use previously described frailty risk score. Relative risks (RR) with 95% confidence intervals were calculated to evaluate associations between CVD, DM, frailty and pathogens. Pathogens as a predictor for subsequent mortality were tested using Kaplan Meier analyses and Cox proportional hazard models. The mean age was 78 (SD: 6.7) years, 20% died, 44% were defined as frail, 20% had DM and 49% had CVD. Presence of CMV antibody titers was associated with frailty, as shown by using both qualitative and quantitative tests, RR ratio 1.4 (95% CI: 1.003-2.16) and RR ratio 1.5 (95% CI: 1.06-2.30), respectively. High IgG antibody titers of HHV6 and EBV were associated with DM, RR ratio 3.3 (95% CI: 1.57-6.49). None of the single or combined pathogens were significantly associated with mortality and/or CVD.Conclusions
Prior CMV infection is associated with frailty, which could be in line with the concept that CMV might have an important role in immunosenescence, while high IgG titers of HHV6 and EBV are associated with DM. No association between a high pathogen burden and morbidity and/or mortality could be demonstrated.137.
Mattias Ljunggren Karin Willquist Guido Zacchi Ed WJ van Niel 《Biotechnology for biofuels》2011,4(1):1-15
Background
The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.Results
We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel?) to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase.Conclusions
Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome. 相似文献138.
Suzanne S. Stokes Robert Albert Ed T. Buurman Beth Andrews Adam B. Shapiro Oluyinka M. Green Andrew R. McKenzie Ludovic R. Otterbein 《Bioorganic & medicinal chemistry letters》2012,22(23):7019-7023
A previously described aryl sulfonamide series, originally found through HTS, targets GlmU, a bifunctional essential enzyme involved in bacterial cell wall synthesis. Using structure-guided design, the potency of enzyme inhibition was increased in multiple isozymes from different bacterial species. Unsuitable physical properties (low Log D and high molecular weight) of those compounds prevented them from entering the cytoplasm of bacteria and inhibiting cell growth. Further modifications described herein led to compounds that possessed antibacterial activity, which was shown to occur through inhibition of GlmU. The left-hand side amide and the right-hand side sulfonamides were modified such that enzyme inhibitory activity was maintained (IC50 <0.1 μM against GlmU isozymes from Gram-negative organisms), and the lipophilicity was increased giving compounds with Log D ?1 to 3. Antibacterial activity in an efflux-pump deficient mutant of Haemophilus influenzae resulted for compounds such as 13. 相似文献
139.
Paramonova E de Jong ED Krom BP van der Mei HC Busscher HJ Sharma PK 《Applied and environmental microbiology》2007,73(21):7023-7028
Biofilms are complex and dynamic communities of microorganisms that are studied in many fields due to their abundance and economic impact. Biofilm thickness is an important parameter in biofilm characterization. Current methods of measuring biofilm thicknesses have several limitations, including application, availability, and costs. Here, we present low-load compression testing (LLCT) as a new method for measuring biofilm thickness. With LLCT, biofilm thicknesses are measured during compression by inducing small loads, up to 5 Pa, corresponding to 0.1% deformation, making LLCT essentially a nondestructive technique. Comparison of the thicknesses of various bacterial and yeasts biofilms obtained by LLCT and by using confocal laser scanning microscopy (CLSM) resulted in the conclusion that CLSM underestimates the biofilm thickness due to poor penetration of different fluorescent dyes, especially through the thicker biofilms, whereas LLCT does not suffer from this thickness limitation. 相似文献
140.