首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6241篇
  免费   526篇
  国内免费   2篇
  2022年   51篇
  2021年   86篇
  2020年   40篇
  2019年   61篇
  2018年   80篇
  2017年   82篇
  2016年   125篇
  2015年   211篇
  2014年   238篇
  2013年   276篇
  2012年   330篇
  2011年   304篇
  2010年   208篇
  2009年   200篇
  2008年   301篇
  2007年   300篇
  2006年   254篇
  2005年   245篇
  2004年   240篇
  2003年   244篇
  2002年   232篇
  2001年   180篇
  2000年   176篇
  1999年   158篇
  1998年   104篇
  1997年   83篇
  1996年   74篇
  1995年   59篇
  1994年   53篇
  1993年   46篇
  1992年   109篇
  1991年   95篇
  1990年   108篇
  1989年   79篇
  1988年   81篇
  1987年   64篇
  1986年   70篇
  1985年   88篇
  1984年   62篇
  1983年   49篇
  1982年   57篇
  1980年   43篇
  1979年   72篇
  1978年   55篇
  1977年   41篇
  1976年   40篇
  1975年   43篇
  1974年   60篇
  1973年   44篇
  1971年   43篇
排序方式: 共有6769条查询结果,搜索用时 15 毫秒
891.
Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin’s coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations.  相似文献   
892.
The pancreatic hormone glucagon hyperpolarizes the liver cell membrane. In the present study, we investigated the cellular signalling pathway of glucagon-induced hyperpolarization of liver cells by using the conventional microelectrode method. The membrane potential was recorded in superficial liver cells of superfused mouse liver slices. In the presence of the K+ channel blockers tetraethylammonium (TEA, 1 mmol/l) and Ba2+ (BaCl2, 5 mmol/l) and the blocker of the Na+/K+ ATPase, ouabain (1 mmol/l), no glucagon-induced hyperpolarization was observed confirming previous findings. The hyperpolarizing effect of glucagon was abolished by the leukotriene B4 receptor antagonist CP 195543 (0.1 mmol/l) and the purinergic receptor antagonist PPADS (5 μmol/l). ATPγS (10 μmol/l), a non-hydrolyzable ATP analogue, induced a hyperpolarization of the liver cell membrane similar to glucagon. U 73122 (1 μmol/l), a blocker of phospholipase C, prevented both the glucagon- and ATPγS-induced hyperpolarization. These findings suggest that glucagon affects the hepatic membrane potential partly by inducing the formation and release of leukotrienes and release of ATP acting on purinergic receptors of the liver cell membrane.  相似文献   
893.
Two forms of a DNA polymerase have been purified from microplasmodia of Physarum polycephalum by poly(ethyleneimine) precipitation and chromatography on DEAE-Sephacel, phosphocellulose, heparin Sepharose, hydroxyapatite, DNA-agarose, blue-Sepharose. They were separated from DNA polymerase alpha on phosphocellulose and from each other on heparin-Sepharose. Form HS1 enzyme was 30-40% pure and form HS2 enzyme 60% with regard to protein contents of the preparations. Form HS2 enzyme was generated from form HS1 enzyme on prolonged standing of enzyme preparations. The DNA polymerases were obtained as complexes of a 60-kDa protein associated with either a 135-kDa (HS1) or a 110-kDa (HS2) DNA-polymerizing polypeptide in a 1:1 molar stoichiometry. The biochemical function of the 60-kDa protein remained unknown. The complexes tended to dissociate during gradient centrifugation and during partition chromatography as well as during polyacrylamide gradient gel electrophoresis under nondenaturing conditions at high dilutions of samples. Both forms existed in plasmodia extracts, their proportions depending on several factors including those which promoted proteolysis. The DNA polymerases resembled eucaryotic DNA polymerase beta by several criteria and were functionally indistinguishable from each other. It is suggested that lower eucaryotes contain repair DNA polymerases, which are similar to those of eubacteria on a molecular mass basis.  相似文献   
894.
Using the example of Duchenne muscular dystrophy, risk calculations for X-linked recessive traits are performed using the Bayesian computation tableaus, demonstrating how to take even complex genetic models and their impact on the calculated risk into consideration.  相似文献   
895.
1. Previous studies documented that zebra mussels became abundant in the Hudson River during 1992 causing an 80–90% reduction in phytoplankton biomass. This study used intervention time series analysis of abundance, biomass and reproduction over the period 1987–95 to assess changes in zooplankton in response to the invasion.
2. Zebra mussels caused a size-dependent decline in zooplankton. Microzooplankton, including tintinnid ciliates, rotifers and copepod nauplii all declined in 1992 and were scarce thereafter. Mean abundances of post-naupliar copepods and of cladocerans were also lower following the invasion but these changes were not statistically significant ( P > 0.05). Egg ratios and clutch sizes for the dominant cladoceran, Bosmina freyi , were not significantly related to zebra mussels, even though relatively low egg ratios were observed after the invasion.
3. The strong declines in microzooplankton were probably caused by direct zebra mussel predation. Estimated consumption rates by mussels were roughly equivalent to maximum microzooplankton growth rates.
4. The total biomass of zooplankton in the Hudson River declined by more than 70% following the invasion. Annual average zooplankton biomass was correlated with chlorophyll, but biomass per unit chlorophyll in the Hudson River was much lower than in lakes. The present study hypothesizes that this lower biomass reflects limitations by riverine flow and by predation during summer.  相似文献   
896.
897.
The coat protein of tobacco mosaic virus forms numerous aggregates, including the small A-protein, the disk, and two helical forms. The structures of the disk, the helical protein forms, and the virus are compared. Most of the differences are in the conformation of the chain between residues 89 and 113, which lies in the region of protein at the center of the virus, inside the RNA. It is disordered in the disk, but has a fixed conformation in the virus and the protein helices. The differences between the virus and the two helical protein forms are largely in the conformations of arginines and carboxylic acids in this region.  相似文献   
898.
899.
900.
Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the “classical” pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号