首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   60篇
  2021年   8篇
  2020年   7篇
  2019年   12篇
  2018年   9篇
  2017年   7篇
  2016年   11篇
  2015年   17篇
  2014年   28篇
  2013年   28篇
  2012年   46篇
  2011年   34篇
  2010年   34篇
  2009年   18篇
  2008年   34篇
  2007年   36篇
  2006年   30篇
  2005年   29篇
  2004年   21篇
  2003年   27篇
  2002年   18篇
  2001年   19篇
  2000年   17篇
  1999年   19篇
  1998年   12篇
  1997年   8篇
  1996年   12篇
  1995年   7篇
  1994年   7篇
  1993年   10篇
  1992年   7篇
  1991年   6篇
  1990年   10篇
  1989年   12篇
  1988年   6篇
  1987年   9篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   10篇
  1980年   5篇
  1979年   8篇
  1978年   9篇
  1977年   8篇
  1975年   6篇
  1974年   7篇
  1973年   11篇
  1972年   9篇
  1971年   5篇
  1968年   5篇
  1967年   7篇
排序方式: 共有764条查询结果,搜索用时 15 毫秒
81.
SlyD is a putative folding helper protein from the Escherichia coli cytosol, which consists of an N-terminal prolyl isomerase domain of the FKBP type and a presumably unstructured C-terminal tail. We produced truncated versions without this tail (SlyD) for SlyD from E. coli, as well as for the SlyD orthologues from Yersinia pestis, Treponema pallidum, Pasteurella multocida, and Vibrio cholerae. They are monomeric in solution and unfold reversibly. All SlyD variants catalyze the proline-limited refolding of ribonuclease T1 with very high efficiencies, and the specificity constants (kcat/KM) are equal to approximately 10(6) M(-1) s(-1). These large values originate from the high affinities of the SlyD orthologues for unfolded RCM-T1, which are reflected in low KM values of approximately 1 microM. SlyD also exhibits pronounced chaperone properties. Permanently unfolded proteins bind with high affinity to SlyD and thus inhibit its prolyl isomerase activity. The unfolded protein chains do not need to contain proline residues to be recognized and bound by SlyD. The conservation of prolyl isomerase activity and chaperone properties within the SlyD family suggests that these proteins might act as true folding helpers in the bacterial cytosol. The SlyD proteins are also well suited for biotechnological applications. As fusion partners they facilitate the refolding and increase the solubility of aggregation-prone proteins such as the gp41 ectodomain fragment of HIV-1.  相似文献   
82.
Microsatellite DNA synthesis represents a significant component of human genome replication that must occur faithfully. However, yeast replicative DNA polymerases do not possess high fidelity for microsatellite synthesis. We hypothesized that the structural features of Y-family polymerases that facilitate accurate translesion synthesis may promote accurate microsatellite synthesis. We compared human polymerases κ (Pol κ) and η (Pol η) fidelities to that of replicative human polymerase δ holoenzyme (Pol δ4), using the in vitro HSV-tk assay. Relative polymerase accuracy for insertion/deletion (indel) errors within 2-3 unit repeats internal to the HSV-tk gene concurred with the literature: Pol δ4 > Pol κ or Pol η. In contrast, relative polymerase accuracy for unit-based indel errors within [GT](10) and [TC](11) microsatellites was: Pol κ ≥ Pol δ4 > Pol η. The magnitude of difference was greatest between Pols κ and δ4 with the [GT] template. Biochemically, Pol κ displayed less synthesis termination within the [GT] allele than did Pol δ4. In dual polymerase reactions, Pol κ competed with either a stalled or moving Pol δ4, thereby reducing termination. Our results challenge the ideology that pol κ is error prone, and suggest that DNA polymerases with complementary biochemical properties can function cooperatively at repetitive sequences.  相似文献   
83.
Increasing evidences suggest that mitochondrial dysfunction plays an important role in the pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD). Alterations of mitochondrial efficiency and function are mainly related to alterations in mitochondrial content, amount of respiratory enzymes, or changes in enzyme activities leading to oxidative stress, mitochondrial permeability transition pore opening, and enhanced apoptosis. More recently, structural changes of the network are related to bioenergetic function, and its consequences are a matter of intensive research. Several mitochondria-targeting compounds with potential efficacy in AD including dimebon, methylene blue, piracetam, simvastatin, Ginkgo biloba, curcumin, and omega-3 polyunsaturated fatty acids have been identified. The majority of preclinical data indicate beneficial effects, whereas most controlled clinical trials did not meet the expectations. Since mitochondrial dysfunction represents an early event in disease progression, one reason for the disappointing clinical results could be that pharmacological interventions might came too late. Thus, more studies are needed that focus on therapeutic strategies starting before severe disease progress.  相似文献   
84.
The mevalonate/isoprenoids/cholesterol pathway has a fundamental role in the brain. Increasing age could be associated with specific changes in mevalonate downstream products. Other than age differences in brain cholesterol and dolichol levels, there has been little if any evidence on the short-chain isoprenoids farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP), as well as downstream lipid products. The purpose of the present study was to determine whether brain levels of FPP, GGPP and sterol precursors and metabolites would be altered in aged mice (23?months) as compared to middle-aged mice (12?months) and young mice (3?months). FPP and GGPP levels were found to be significantly higher in brain homogenates of 23-months-old mice. The ratio of FPP to GGPP did not differ among the three age groups suggesting that increasing age does not alter the relative distribution of the two isoprenoids. Gene expression of FPP synthase and GGPP synthase did not differ among the three age groups. Gene expression of HMG-CoA reductase was significantly increased with age but in contrast gene expression of squalene synthase was reduced with increasing age. Levels of squalene, lanosterol and lathosterol did not differ among the three age groups. Desmosterol and 7-dehydroxycholesterol, which are direct precursors in the final step of cholesterol biosynthesis were significantly lower in brains of aged mice. Levels of cholesterol and its metabolites 24S- and 25S-hydroxycholesterol were similar in all three age groups. Our novel find ings on increased FPP and GGPP levels in brains of aged mice may impact on protein prenylation and contribute to neuronal dysfunction observed in aging and certain neurodegenerative diseases.  相似文献   
85.
A New Link to Mitochondrial Impairment in Tauopathies   总被引:1,自引:0,他引:1  
Tauopathies like the "frontotemporal dementia with Parkinsonism linked to chromosome 17" (FTDP-17) are characterized by an aberrant accumulation of intracellular neurofibrillary tangles composed of hyperphosphorylated tau. For FTDP-17, a pathogenic tau mutation P301L was identified. Impaired mitochondrial function including disturbed dynamics such as fission and fusion are most likely major pathomechanisms of most neurodegenerative diseases. However, very little is known if tau itself affects mitochondrial function and dynamics. We addressed this question using SY5Y cells stably overexpressing wild-type (wt) and P301L mutant tau. P301L overexpression resulted in a substantial complex I deficit accompanied by decreased ATP levels and increased susceptibility to oxidative stress. This was paralleled by pronounced changes in mitochondrial morphology, decreased fusion and fission rates accompanied by reduced expression of several fission and fusion factors like OPA-1 or DRP-1. In contrast, overexpression of wt tau exhibits protective effects on mitochondrial function and dynamics including enhanced complex I activity. Our findings clearly link tau bidirectional to mitochondrial function and dynamics, identifying a novel aspect of the physiological role of tau and the pathomechanism of tauopathies.  相似文献   
86.
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction and increased oxidative stress. These changes are not only observed in the brain of AD patients but also in the periphery. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and especially mitochondrial dysfunction as peripheral markers for the detection of AD in blood cells especially in lymphocytes. We discuss recent not otherwise published findings on the level of complex activities of the respiratory chain comprising mitochondrial respiration and the mitochondrial membrane potential (MMP). We obtained decreased basal MMP levels in lymphocytes from AD patients as well as enhanced sensitivity to different complex inhibitors of the respiratory chain. These changes are in line with mitochondrial defects obtained in AD cell and animal models, and in post-mortem AD tissue. Importantly, these mitochondrial alterations where not only found in AD patients but also in patients with mild cognitive impairment (MCI). These new findings point to a relevance of mitochondrial function as an early peripheral marker for the detection of AD and MCI.  相似文献   
87.
88.
Understanding the genetic basis of local adaptation is challenging due to the subtle balance among conflicting evolutionary forces that are involved in its establishment and maintenance. One system with which to tease apart these difficulties is clines in adaptive characters. Here we analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce (Picea abies), arrayed along a latitudinal gradient ranging from 47°N to 68°N. We confirmed that variation in bud set is strongly clinal, using a subset of five populations. Genotypes for 137 single-nucleotide polymorphisms (SNPs) chosen from 18 candidate genes putatively affecting bud set and 308 control SNPs chosen from 264 random genes were analyzed for patterns of genetic structure and correlation to environment. Population genetic structure was low (F(ST) = 0.05), but latitudinal patterns were apparent among Scandinavian populations. Hence, part of the observed clinal variation should be attributable to population demography. Conditional on patterns of genetic structure, there was enrichment of SNPs within candidate genes for correlations with latitude. Twenty-nine SNPs were also outliers with respect to F(ST). The enrichment for clinal variation at SNPs within candidate genes (i.e., SNPs in PaGI, PaPhyP, PaPhyN, PaPRR7, and PaFTL2) indicated that local selection in the 18 populations, and/or selection in the ancestral populations from which they were recently derived, shaped the observed cline. Validation of these genes using expression studies also revealed that PaFTL2 expression is significantly associated with latitude, thereby confirming the central role played by this gene in the control of phenology in plants.  相似文献   
89.
The period around the time of conception is one characterised by considerable cytological and molecular restructuring as ovulation occurs, the oocyte is fertilised and the embryonic developmental programme begins. The intrinsic processes regulating peri-conceptional progression are supplemented by environmental factors, which contribute important metabolic information that influences several aspects of the developmental programme. Indeed, there is growing evidence from different mammalian animal models, reviewed here, that the peri-conceptional environment mediated through maternal nutrition can modify development throughout gestation and affect the physiological and metabolic health of adult offspring. The concept that adult disease risk may owe its origin to the quality of peri-conceptional maternal nutrition is one, which merits further research for mechanistic understanding and devising preventive strategies.  相似文献   
90.
Spastin and katanin are ring-shaped hexameric AAA ATPases that sever microtubules, and thus crucially depend on a physical interaction with microtubules. For the first time, we report here the microtubule binding properties of spastin at the single-molecule level, and compare them to katanin. Microscopic fluorescence assays showed that human spastin bound to microtubules by ionic interactions, and diffused along microtubules with a diffusion coefficient comparable to katanin. The microscopic measurement of landing and dissociation rates demonstrated the ionic character of the interaction, which could be mapped to a patch of three lysine residues outside of the catalytic domain of human spastin. This motif is not conserved in Drosophila spastin or katanin, which also bound by non-catalytic parts of the protein. The binding affinities of spastin and katanin were nucleotide-sensitive, with the lowest affinities under ADP,, the highest under ATP-γS conditions. These changes correlated with the formation of higher oligomeric states, as shown in biochemical experiments and electron microscopic images. Vice versa, the artificial dimerization of human spastin by addition of a coiled coil led to a constitutively active enzyme. These observations suggest that dimer formation is a crucial step in the formation of the active complex, and thus the severing process by spastin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号