首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   613篇
  免费   42篇
  2021年   11篇
  2020年   3篇
  2019年   10篇
  2018年   5篇
  2017年   5篇
  2016年   13篇
  2015年   14篇
  2014年   20篇
  2013年   39篇
  2012年   34篇
  2011年   38篇
  2010年   25篇
  2009年   21篇
  2008年   26篇
  2007年   21篇
  2006年   30篇
  2005年   31篇
  2004年   25篇
  2003年   33篇
  2002年   43篇
  2001年   17篇
  2000年   15篇
  1999年   8篇
  1998年   13篇
  1997年   5篇
  1996年   6篇
  1995年   10篇
  1994年   10篇
  1992年   11篇
  1991年   11篇
  1990年   4篇
  1989年   8篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1969年   3篇
  1968年   9篇
  1964年   2篇
  1929年   2篇
  1928年   3篇
排序方式: 共有655条查询结果,搜索用时 15 毫秒
51.
52.
NADPH oxidases (Nox) are membrane complexes that produce O2?. Researches in mammals, plants and fungi highlight the involvement of Nox‐generated ROS in cell proliferation, differentiation and defense. In mammals, the core enzyme gp91phox/Nox2 is associated with p22phox forming the flavocytochrome b558 ready for activation by a cytosolic complex. Intriguingly, no homologue of the p22phox gene has been found in fungal genomes, questioning how the flavoenzyme forms. Using whole genome sequencing combined with phylogenetic analysis and structural studies, we identify the fungal p22phox homologue as being mutated in the Podospora anserina mutant IDC509. Functional studies show that the fungal p22phox, PaNoxD, acts along PaNox1, but not PaNox2, a second fungal gp91phox homologue. Finally, cytological analysis of functional tagged versions of PaNox1, PaNoxD and PaNoxR shows clear co‐localization of PaNoxD and PaNox1 and unravel a dynamic assembly of the complex in the endoplasmic reticulum and in the vacuolar system.  相似文献   
53.
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a facile technique for quantitative analysis of RNA secondary structure. In general, low SHAPE signal values indicate Watson-Crick base-pairing, and high values indicate positions that are single-stranded within the RNA structure. However, the relationship of SHAPE signals to structural properties such as non-Watson-Crick base-pairing or stacking has thus far not been thoroughly investigated. Here, we present results of SHAPE experiments performed on several RNAs with published three-dimensional structures. This strategy allows us to analyze the results in terms of correlations between chemical reactivities and structural properties of the respective nucleotide, such as different types of base-pairing, stacking, and phosphate-backbone interactions. We find that the RNA SHAPE signal is strongly correlated with cis-Watson-Crick/Watson-Crick base-pairing and is to a remarkable degree not dependent on other structural properties with the exception of stacking. We subsequently generated probabilistic models that estimate the likelihood that a residue with a given SHAPE score participates in base-pairing. We show that several models that take SHAPE scores of adjacent residues into account perform better in predicting base-pairing compared with individual SHAPE scores. This underscores the context sensitivity of SHAPE and provides a framework for an improved interpretation of the response of RNA to chemical modification.  相似文献   
54.
This review, comprised of our own data and that of others, provides a summary overview of histone deacetylase (HDAC) inhibition on intestinal inflammation as well as inflammation-mediated carcinogenesis. Experimental colitis in mice represents an excellent in vivo model to define the specific cell populations and target tissues modulated by inhibitors of HDAC. Oral administration of either suberyolanilide hydroxamic acid (SAHA) or ITF2357 results in an amelioration in these models, as indicated by a significantly reduced colitis disease score and histological score. This effect was paralleled by suppression of proinflammatory cytokines at the site of inflammation as well as specific changes in the composition of cells within the lamina propria. In addition, tumor number and size was significantly reduced in two models of inflammation-driven tumorigenesis, namely interleukin (IL)-10-deficient mice and the azoxymethane-dextran sulfate sodium (DSS) model, respectively. The mechanisms affected by HDAC inhibition, contributing to this antiinflammatory and antiproliferative potency will be discussed in detail. Furthermore, with regard to the relevance in human inflammatory bowel disease, the doses of ITF2357 considered safe in humans and the corresponding serum concentrations are consistent with the efficacious dosing used in our in vivo as well as in vitro experiments. Thus, the data strongly suggest that HDAC inhibitors could serve as a therapeutic option in inflammatory bowel disease.  相似文献   
55.
Because only daughters inherit the paternal X-chromosome, an asymmetry in adaptive investment decisions has been suggested for certain patrilineal kin. Namely, paternal grandmothers (PGMs) may favor a granddaughter over a grandson, because (within the limits of paternity uncertainty) the former definitely carries one of their X-chromosomes, while the latter definitely does not. Here, we test the hypothesis that the PGMs' sex-specific favoritism influences reproductive scheduling. Using family-reconstitution data, we analyzed interbirth intervals (IBIs) in the historical population from the Krummhörn (Ostfriesland, Germany). In order to account for potentially timevarying effects on IBIs we applied (and combined) both the additive hazards regression of Aalen and the Cox proportional hazards model. We found that the presence of the PGM but not that of the maternal grandmother (MGM), correlates with the IBI following the birth of a grandchild as a function of the grandchild's sex. Specifically, in the presence of a PGM, the IBIs following the birth of a granddaughter are longer than in her absence. However, contrary to predictions from theoretical life history framework, model estimates for a PGM's effect on a mother's IBI did not significantly vary over time This study supports the hypothesis that PGM behavior differs according to her grandchild's sex. Further research should now explore the biological mechanism underlying this phenomenon.  相似文献   
56.

Background

It is possible to infer the past of populations by comparing genomes between individuals. In general, older populations have more genomic diversity than younger populations. The force of selection can also be inferred from population diversity. If selection is strong and frequently eliminates less fit variants, diversity will be limited because new, initially homogeneous populations constantly emerge.

Methodology and Results

Here we translate a population genetics approach to human somatic cancer cell populations by measuring genomic diversity within and between small colorectal cancer (CRC) glands. Control tissue culture and xenograft experiments demonstrate that the population diversity of certain passenger DNA methylation patterns is reduced after cloning but subsequently increases with time. When measured in CRC gland populations, passenger methylation diversity from different parts of nine CRCs was relatively high and uniform, consistent with older, stable lineages rather than mixtures of younger homogeneous populations arising from frequent cycles of selection. The diversity of six metastases was also high, suggesting dissemination early after transformation. Diversity was lower in DNA mismatch repair deficient CRC glands, possibly suggesting more selection and the elimination of less fit variants when mutation rates are elevated.

Conclusion/Significance

The many hitchhiking passenger variants observed in primary and metastatic CRC cell populations are consistent with relatively old populations, suggesting that clonal evolution leading to selective sweeps may be rare after transformation. Selection in human cancers appears to be a weaker than presumed force after transformation, consistent with the observed rarity of driver mutations in cancer genomes. Phenotypic plasticity rather than the stepwise acquisition of new driver mutations may better account for the many different phenotypes within human tumors.  相似文献   
57.

Background

The identification of sensitive biomarkers for the detection of ovarian cancer is of high clinical relevance for early detection and/or monitoring of disease recurrence. We developed a systematic multi-step biomarker discovery and verification strategy to identify candidate DNA methylation markers for the blood-based detection of ovarian cancer.

Methodology/Principal Findings

We used the Illumina Infinium platform to analyze the DNA methylation status of 27,578 CpG sites in 41 ovarian tumors. We employed a marker selection strategy that emphasized sensitivity by requiring consistency of methylation across tumors, while achieving specificity by excluding markers with methylation in control leukocyte or serum DNA. Our verification strategy involved testing the ability of identified markers to monitor disease burden in serially collected serum samples from ovarian cancer patients who had undergone surgical tumor resection compared to CA-125 levels.We identified one marker, IFFO1 promoter methylation (IFFO1-M), that is frequently methylated in ovarian tumors and that is rarely detected in the blood of normal controls. When tested in 127 serially collected sera from ovarian cancer patients, IFFO1-M showed post-resection kinetics significantly correlated with serum CA-125 measurements in six out of 16 patients.

Conclusions/Significance

We implemented an effective marker screening and verification strategy, leading to the identification of IFFO1-M as a blood-based candidate marker for sensitive detection of ovarian cancer. Serum levels of IFFO1-M displayed post-resection kinetics consistent with a reflection of disease burden. We anticipate that IFFO1-M and other candidate markers emerging from this marker development pipeline may provide disease detection capabilities that complement existing biomarkers.  相似文献   
58.

Background

Adenocarcinomas located near the gastroesophageal junction have unclear etiology and are difficult to classify. We used DNA methylation analysis to identify subtype-specific markers and new subgroups of gastroesophageal adenocarcinomas, and studied their association with epidemiological risk factors and clinical outcomes.

Methodology/Principal Findings

We used logistic regression models and unsupervised hierarchical cluster analysis of 74 DNA methylation markers on 45 tumor samples (44 patients) of esophageal and gastric adenocarcinomas obtained from a population-based case-control study to uncover epigenetic markers and cluster groups of gastroesophageal adenocarcinomas. No distinct epigenetic differences were evident between subtypes of gastric and esophageal cancers. However, we identified two gastroesophageal adenocarcinoma subclusters based on DNA methylation profiles. Group membership was best predicted by GATA5 DNA methylation status. We analyzed the associations between these two epigenetic groups and exposure using logistic regression, and the associations with survival time using Cox regression in a larger set of 317 tumor samples (278 patients). There were more males with esophageal and gastric cardia cancers in Cluster Group 1 characterized by higher GATA5 DNA methylation values (all p<0.05). This group also showed associations of borderline statistical significance with having ever smoked (p-value = 0.07), high body mass index (p-value = 0.06), and symptoms of gastroesophageal reflux (p-value = 0.07). Subjects in cluster Group 1 showed better survival than those in Group 2 after adjusting for tumor differentiation grade, but this was not found to be independent of tumor stage.

Conclusions/Significance

DNA methylation profiling can be used in population-based studies to identify epigenetic subclasses of gastroesophageal adenocarcinomas and class-specific DNA methylation markers that can be linked to epidemiological data and clinical outcome. Two new epigenetic subgroups of gastroesophageal adenocarcinomas were identified that differ to some extent in their survival rates, risk factors of exposure, and GATA5 DNA methylation.  相似文献   
59.
CD4 T-cell help is required for the induction of efficient CD8 T-cells responses and the generation of memory cells. Lack of CD4 T-cell help may contribute to an exhausted CD8 phenotype and viral persistence. Little is known about priming of CD4 T-cells by liver-derived antigen. We used TF-OVA mice expressing ovalbumin in hepatocytes to investigate CD4 T-cell priming by liver-derived antigen and the impact of CD4 T-cell help on CD8 T-cell function. Naïve and effector CD4 T-cells specific for ovalbumin were transferred into TF-OVA mice alone or together with naïve ovalbumin-specific CD8 T-cells. T-cell activation and function were analyzed. CD4 T-cells ignored antigen presented by liver antigen-presenting cells (APCs) in vitro and in vivo but were primed in the liver-draining lymph node and the spleen. No priming occurred in the absence of bone-marrow derived APCs capable of presenting ovalbumin in vivo. CD4 T-cells primed in TF-OVA mice displayed defective Th1-effector function and caused no liver damage. CD4 T-cells were not required for the induction of hepatitis by CD8 T-cells. Th1-effector but not naïve CD4 T-cells augmented the severity of liver injury caused by CD8 T-cells. Our data demonstrate that CD4 T-cells fail to respond to liver-derived antigen presented by liver APCs and develop defective effector function after priming in lymph nodes and spleen. The lack of CD4 T-cell help may be responsible for insufficient CD8 T-cell function against hepatic antigens.  相似文献   
60.
We investigated by immunohistochemistry (IHC) the distribution of caldendrin, the founding member of a novel family of neuronal calcium-binding proteins closely related to calmodulin, in human forebrain. Caldendrin immunoreactivity was unevenly distributed, with prominent staining in the paleo- and neocortex, hippocampus, and hypothalamus. With the exception of the hypothalamus, labeling was restricted to the somato-dendritic compartment of neurons. This distribution completely matches that reported in rat, indicating that the cellular function is most likely conserved among species. Therefore, one prerequisite for functional studies in rodent models aimed at elucidation of mechanisms with relevance for humans can be based on the present findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号