首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   25篇
  2022年   2篇
  2021年   5篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   9篇
  2015年   9篇
  2014年   12篇
  2013年   20篇
  2012年   19篇
  2011年   23篇
  2010年   12篇
  2009年   14篇
  2008年   16篇
  2007年   7篇
  2006年   18篇
  2005年   20篇
  2004年   16篇
  2003年   27篇
  2002年   30篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1983年   2篇
  1982年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1969年   2篇
  1968年   3篇
  1964年   1篇
  1963年   1篇
  1935年   1篇
  1931年   1篇
排序方式: 共有377条查询结果,搜索用时 15 毫秒
151.

Aim

To study the effects of RD on renal artery wall function non-invasively using magnetic resonance.

Methods and Results

32 patients undergoing RD were included. A 3.0 Tesla magnetic resonance of the renal arteries was performed before RD and after 6-month. We quantified the vessel sharpness of both renal arteries using a quantitative analysis tool (Soap-Bubble®). In 17 patients we assessed the maximal and minimal cross-sectional area of both arteries, peak velocity, mean flow, and renal artery distensibility. In a subset of patients wall shear stress was assessed with computational flow dynamics. Neither renal artery sharpness nor renal artery distensibility differed significantly. A significant increase in minimal and maximal areas (by 25.3%, p = 0.008, and 24.6%, p = 0.007, respectively), peak velocity (by 16.9%, p = 0.021), and mean flow (by 22.4%, p = 0.007) was observed after RD. Wall shear stress significantly decreased (by 25%, p = 0.029). These effects were observed in blood pressure responders and non-responders.

Conclusions

RD is not associated with adverse effects at renal artery level, and leads to an increase in cross-sectional areas, velocity and flow and a decrease in wall shear stress.  相似文献   
152.

Introduction

Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43) and estrogen receptors (ERs). Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2) on Cx43 expression in two glioma cell lines with variable native expression of Cx43.

Materials and Methods

F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.

Results

E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.

Discussion

These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.  相似文献   
153.
154.
In this essay the author combines research findings and hypotheses to reach the conclusion that human religiousness may well arise from a variety of evolutionary adaptations. Though religions cannot be put to the test of hard science, religious customs and behaviour appear to be linked to adaptive advantages. These include improved ability to deal with crises and to overcome the temptation to benefit from the fruits of others' labours without paying, hence strengthening cooperation and moral solidarity, whilst improving competitiveness of the group with others. These behavioural traits fit well with the observation that human cognitive strategies are highly pre‐programmed to generate religious convictions.  相似文献   
155.
156.
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly ?0.5 Mg ha?1 per °C. Doubling [CO2] from 360 to 720 μmol mol?1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.  相似文献   
157.
Azetidine-2-carboxylic acid (Aze) 1 is a non-protein amino acid present in sugar beets and in table beets (Beta vulgaris). It is readily misincorporated into proteins in place of proline 2 in many species, including humans, and causes numerous toxic effects as well as congenital malformations. Its role in the pathogenesis of disease in humans has remained unexplored. Sugar beet agriculture, especially in the Northern Hemisphere, has become widespread during the past 150 years, and now accounts for nearly 30% of the world’s supply of sucrose. Sugar beet byproducts are also used as a dietary supplement for livestock. Therefore, this study was undertaken as an initial survey to identify Aze-containing links in the food chain. Herein, we report the presence of Aze 1 in three sugar beet byproducts that are fed to farm animals: sugar beet molasses, shredded sugar beet pulp, and pelleted sugar beet pulp.  相似文献   
158.
Macrophage migration is a key aspect in the initiation and progression of atherosclerosis. Insulin-like growth factor (IGF)-1 is highly expressed in macrophages in human atheroma. Its function in macrophage motility, however, remains to be elucidated. The aim of this study was to investigate the impact of IGF-1 on macrophage migration, its signaling pathways and the involvement of integrins and/or matrix metalloproteinases (MMPs).

Results

Migration checker-box experiments demonstrated that IGF-1 induced chemotaxis in human THP-1/macrophages. IGF-1 induced migration was inhibited by RGD-containing peptides and the αvβ3-blocking antibody LM609, but was unaffected by the MMP-inhibitor GM6001. Immunoblotting demonstrated that IGF-1 did not affect the activation of MMPs or TIMPs, nor did it increase αv-integrin protein levels. However, IGF-1 induced recruitment of αvβ3, as well as trans-location of the integrin adaptor protein phospho-paxillin to focal adhesion sites. Pharmacological blocking experiments with specific inhibitors of Akt, PKC and p38 MAP-kinase revealed that IGF-1-dependent activation of focal adhesion kinase (FAK) and paxillin, and consecutively IGF-1 facilitated migration, required IGF-1/IGF-1R-mediated PI3-kinase/PKC/p38-dependent integrin inside-out signaling.

Conclusion

IGF-1 plays a vital role in macrophage migration critically implicated in tissue inflammation. This involves activation of integrins and focal adhesion formation via inside-out PI3-kinase/PKC/p38-dependent signaling, but does not require MMP activation.  相似文献   
159.

Background

Lung cancer is a very frequent and lethal tumor with an identifiable risk population. Cytological analysis and chest X-ray failed to reduce mortality, and CT screenings are still controversially discussed. Recent studies provided first evidence for the potential usefulness of autoantigens as markers for lung cancer.

Methods

We used extended panels of arrayed antigens and determined autoantibody signatures of sera from patients with different kinds of lung cancer, different common non-tumor lung pathologies, and controls without any lung disease by a newly developed computer aided image analysis procedure. The resulting signatures were classified using linear kernel Support Vector Machines and 10-fold cross-validation.

Results

The novel approach allowed for discriminating lung cancer patients from controls without any lung disease with a specificity of 97.0%, a sensitivity of 97.9%, and an accuracy of 97.6%. The classification of stage IA/IB tumors and controls yielded a specificity of 97.6%, a sensitivity of 75.9%, and an accuracy of 92.9%. The discrimination of lung cancer patients from patients with non-tumor lung pathologies reached an accuracy of 88.5%.

Conclusion

We were able to separate lung cancer patients from subjects without any lung disease with high accuracy. Furthermore, lung cancer patients could be seprated from patients with other non-tumor lung diseases. These results provide clear evidence that blood-based tests open new avenues for the early diagnosis of lung cancer.  相似文献   
160.
Recent studies suggest that central nervous system synapses can persist for weeks, months, perhaps lifetimes, yet little is known as to how synapses maintain their structural and functional characteristics for so long. As a step toward a better understanding of synaptic maintenance we examined the loss, redistribution, reincorporation, and replenishment dynamics of Synapsin I and ProSAP2/Shank3, prominent presynaptic and postsynaptic matrix molecules, respectively. Fluorescence recovery after photobleaching and photoactivation experiments revealed that both molecules are continuously lost from, redistributed among, and reincorporated into synaptic structures at time-scales of minutes to hours. Exchange rates were not affected by inhibiting protein synthesis or proteasome-mediated protein degradation, were accelerated by stimulation, and greatly exceeded rates of replenishment from somatic sources. These findings indicate that the dynamics of key synaptic matrix molecules may be dominated by local protein exchange and redistribution, whereas protein synthesis and degradation serve to maintain and regulate the sizes of local, shared pools of these proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号