首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   87篇
  国内免费   3篇
  2023年   11篇
  2022年   8篇
  2021年   30篇
  2020年   33篇
  2019年   26篇
  2018年   32篇
  2017年   28篇
  2016年   37篇
  2015年   69篇
  2014年   69篇
  2013年   76篇
  2012年   115篇
  2011年   103篇
  2010年   50篇
  2009年   48篇
  2008年   63篇
  2007年   56篇
  2006年   54篇
  2005年   46篇
  2004年   33篇
  2003年   31篇
  2002年   33篇
  2001年   8篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1984年   1篇
  1982年   3篇
  1970年   1篇
排序方式: 共有1097条查询结果,搜索用时 15 毫秒
101.
Nuclear transfer (NT) using transfected primary cells is an efficient approach for the generation of transgenic goats. However, reprogramming abnormalities associated with this process might result in compromised animals. We examined the health, reproductive performance, and milk production of four transgenic does derived from somatic cell NT. Goats were derived from two fetal cell lines, each transfected with a transgene expressing a different version of the MSP-1(42) malaria antigen, either glycosylated or non-glycosylated. Two female kids were produced per cell line. Health and growth of these NT animals were monitored and compared with four age-matched control does. There were no differences in birth and weaning weights between NT and control animals. The NT does were bred and produced a total of nine kids. The control does delivered five kids. The NT does expressing the glycosylated antigen lactated only briefly, probably as a result of over-expression of the MSP-1(42) protein. However, NT does expressing the non-glycosylated antigen had normal milk yields and produced the recombinant protein. These data demonstrated that the production of healthy transgenic founder goats by somatic cell NT is readily achievable and that these animals can be used successfully for the production of a candidate Malaria vaccine.  相似文献   
102.
We have previously demonstrated that human recombinant soluble melanotransferrin (hr-sMTf) interacts with the single-chain zymogen pro urokinase-type plasminogen activator (scu-PA) and plasminogen. In the present work, the impact of exogenous hr-sMTf on endothelial cells (EC) migration and morphogenic differentiation into capillary-like structures (tubulogenesis) was assessed. hr-sMTF at 10 nM inhibited by 50% the migration and tubulogenesis of human microvessel EC (HMEC-1). In addition, in hr-sMTf-treated HMEC-1, the expression of both urokinase-type plasminogen activator receptor (u-PAR) and low-density lipoprotein receptor-related protein (LRP) are down-regulated. However, fluorescence-activated cell sorting analysis revealed a 25% increase in cell surface u-PAR in hr-sMTf-treated HMEC-1, whereas the binding of the urokinase-type plasminogen activator (u-PA)*plasminogen activator inhibitor-1 (PAI-1) complex is decreased. This reduced u-PA-PAI-1 binding is correlated with a strong inhibition of the HMEC-1 plasminolytic activity, indicating that exogenous hr-sMTf treatment alters the internalization and recycling processes of free and active u-PAR at the cellular surface. Overall, these results demonstrate that exogenous hr-sMTf affects plasminogen activation at the cell surface, thus leading to the inhibition of EC movement and tubulogenesis. These results are the first to consider the potential use of hr-sMTf as a possible therapeutic agent in angiogenesis-related pathologies.  相似文献   
103.
Chasmagnathus granulata phosphoenolpyruvate carboxykinase (PEPCK) cDNA from jaw muscle was cloned and sequenced, showing a specific domain to bind phosphoenolpyruvate in addition to the kinase-1 and kinase-2 motifs to bind guanosine triphosphate (GTP) and Mg(2+), respectively, specific for all PEPCKs. In the kinase-1 motifs the GK was changed to RK. The first 19 amino acids of the putative enzyme contain hydrophobic amino acids and hydroxylated residues specific to a mitochondrial type signal. The PEPCK is expressed in hepatopancreas, muscles, nervous system, heart, and gills. Hyperosmotic stress for 24 h increased the PEPCK mRNA level, gluconeogenic and PEPCK activities in muscle.  相似文献   
104.
Glyconectins (GNs) represent a new class of proteoglycan-like cell adhesion and recognition molecules found in several Porifera species. Physico-chemical properties of GN carbohydrate moieties, such as size, composition, and resistance to most glycosaminoglycan-degrading enzymes, distinguish them from any other type of known glycoproteins. The molecular mechanism of GN-mediated self/non-self discrimination function is based on highly species-specific and Ca(2+)-dependent GN to GN associations that approach the selectivity of the evolutionarily advanced immunoglobulin superfamily. Carbohydrates of glyconectins 1, 2, and 3 are essential for species-specific auto-aggregation properties in three respective Porifera species. To obtain a structural insight into the molecular mechanisms, we performed carbohydrate structural analyses of glyconectins isolated from the three sponge model systems, Microciona prolifera (GN1), Halichondria panicea (GN2), and Cliona celata (GN3). The glycan content of all three GNs ranged between 40 and 60% of their total mass. Our approach using sequential and selective chemical degradation of GN glycans and subsequent mass spectrometric and NMR analyses revealed that each glyconectin presents novel and highly species-specific carbohydrate sequences. All three GNs include distinct acid-resistant and acid-labile carbohydrate domains, the latter composed of novel repetitive units. We have sequenced four short sulfated and one pyruvilated unit in GN1, eight larger and branched pyruvilated oligosaccharides in GN2, which represent a heterogeneous but related family of structures, and four sulfated units in GN3.  相似文献   
105.
Phospholipid bilayers have been intensively studied by molecular dynamics (MD) simulation in recent years. The properties of bilayer edges are important in determining the structure and stability of pores formed in vesicles and biomembranes. In this work, we use molecular dynamics simulation to investigate the structure, dynamics, and line tension of the edges of bilayer ribbons composed of pure dimyristoylphosphatidylcholine (DMPC) or palmitoyl-oleoylphosphatidylethanolamine (POPE). As expected, we observe a significant reorganization of lipids at and near the edges. The treatment of electrostatic effects is shown to have a qualitative impact on the structure and stability of the edge, and significant differences are observed in the dynamics and structure of edges formed by DMPC and palmitoyl-oleoylphosphatidylethanolamine. From the pressure anisotropy in the simulation box, we calculate a line tension of approximately 10-30 pN for the DMPC edge, in qualitative agreement with experimental estimates for similar lipids.  相似文献   
106.
The Benton Visual Retention Test (BVRT) is a widely used test for the evaluation of visuospatial memory. Alternate forms and various types of administration are available. Whereas most of the formats are visuoconstructional tasks, the forms F and G involve visual recognition. There are several reasons to use multiple-choice formats when studying age-related memory changes. Its procedure involving immediate recognition of geometric designs allows assessment of visuospatial working memory--a memory system particularly vulnerable to aging. The administration is rapid--it can be completed in 5 min--and is easily standardized. The multiple-choice format, relative to the drawing-response formats, also has the advantage of eliminating the influence of visuomotor and manual dexterity problems common in the elderly. Another advantage is the possibility of referring to recent geriatric norms, which can help clinicians or researchers identify individuals with low scores and potentially at risk for dementia.  相似文献   
107.
108.
109.
Across vertebrates, the observation that lower-pitched vocalizations are typically associated with larger and/or higher quality males has lead to the widespread belief that inter- and intra-sexual selection will produce male calls with low fundamental frequencies (F0). Here we investigated the response of oestrous red deer hinds to playback of re-synthesized male roars characterized by either higher than average or lower than average F0. We found that hinds prefer higher rather than lower ‘pitched’ roars, providing, to our knowledge, the first evidence of such a bias in nonhuman mammals. Our findings can be interpreted in relation to previous observations that the minimum F0 of roars is positively correlated with male reproductive success in free-ranging red deer stags, and that across Cervids the F0 of male mating calls shows extreme variability. Females showing preferences for higher-pitched roars might derive genetic benefits through more competitive male offspring. Our results emphasize the need for further investigations of female preferences in mammals in order to better understand the extreme variation of F0 values observed in male sexual calls.  相似文献   
110.
In infected cells, hepatitis C virus (HCV) induces the formation of membrane alterations referred to as membranous webs, which are sites of RNA replication. In addition, HCV RNA replication also occurs in smaller membrane structures that are associated with the endoplasmic reticulum. However, cellular mechanisms involved in the formation of HCV replication complexes remain largely unknown. Here, we used brefeldin A (BFA) to investigate cellular mechanisms involved in HCV infection. BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARF), which can lead to a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways. Our data show that HCV RNA replication is highly sensitive to BFA. Individual knockdown of the cellular targets of BFA using RNA interference and the use of a specific pharmacological inhibitor identified GBF1, a guanine nucleotide exchange factor for small GTPases of the ARF family, as a host factor critically involved in HCV replication. Furthermore, overexpression of a BFA-resistant GBF1 mutant rescued HCV replication in BFA-treated cells, indicating that GBF1 is the BFA-sensitive factor required for HCV replication. Finally, immunofluorescence and electron microscopy analyses indicated that BFA does not block the formation of membranous web-like structures induced by expression of HCV proteins in a nonreplicative context, suggesting that GBF1 is probably involved not in the formation of HCV replication complexes but, rather, in their activity. Altogether, our results highlight a functional connection between the early secretory pathway and HCV RNA replication.Hepatitis C virus (HCV) is an important human pathogen. It mainly infects human hepatocytes, and this often leads to chronic hepatitis, cirrhosis, or hepatocarcinoma. HCV studies have been hampered for many years by the difficulty in propagating this virus in vitro. Things have recently changed with the development of a cell culture model referred to as HCVcc (34, 60, 65), which allows the study of the HCV life cycle in cell culture and facilitates studies of the interactions between HCV and the host cell.HCV is an enveloped positive-strand RNA virus belonging to the family Flaviviridae (35). The viral genome contains a single open reading frame, which is flanked by two noncoding regions that are required for translation and replication. All viral proteins that are produced after proteolytic processing of the initially synthesized polyprotein are membrane associated (15, 43). This reflects the fact that virtually all steps of the viral life cycle occur in close association with cellular membranes.Interactions of HCV with cell membranes begin during entry. Several receptors, coreceptors, and other entry factors have been discovered over the years, which link HCV entry to specialized domains of the plasma membrane, such as tetraspanin-enriched microdomains and tight junctions (8, 16, 59). The internalization of the viral particle occurs by clathrin-mediated endocytosis (5, 40). The fusion of the viral envelope with the membrane of an acidic endosome likely mediates the transfer of the viral genome to the cytosol of the cell (5, 40, 57). However, little is known regarding the pre- and postfusion intracellular transport steps of entering viruses in the endocytic pathway.HCV RNA replication is also associated with cellular membranes. Replication begins with the translation of the genomic RNA of an incoming virus. This leads to the production of viral proteins, which in turn initiate the actual replication of the viral RNA. Mechanisms regulating the transition from the translation of the genomic RNA to its replication are not yet known. All viral proteins are not involved in RNA replication. Studies performed with subgenomic replicons demonstrated that proteins NS3-4A, NS4B, NS5A, and NS5B are necessary and sufficient for replication (6, 27, 37). RNA replication proceeds through the synthesis of a cRNA strand (negative strand), catalyzed by the RNA-dependent RNA polymerase activity of NS5B, which is then used as a template for the synthesis of new positive strands.Electron microscopy studies using a subgenomic replicon model suggested that replication takes place in membrane structures made of small vesicles, referred to as “membranous webs,” which are induced by the virus (26). Membranous webs are detectable not only in cells carrying subgenomic replicons but also in infected cells (50). They appear to be associated with the endoplasmic reticulum (ER) (26). In addition to the membranous webs, a second type of ER-associated replicase that is smaller and more mobile has recently been described (63). Cellular mechanisms leading to these membrane alterations are still poorly understood. In cells replicating and secreting infectious viruses effectively, the situation appears to be even more complex, since replicase components appear to be, at least in part, associated with cytoplasmic lipid droplets (41, 50, 56). This association depends on the capsid protein (41) and may reflect a coupling between replication and assembly. Indeed, HCV assembly and secretion show some similarities with very-low-density lipoprotein (VLDL) maturation and secretion (24, 64).Our knowledge of the cellular membrane mechanisms involved in the HCV life cycle is still limited. The expression of NS4B alone induces membrane alterations that are reminiscent of membranous webs (19). However, cellular factors that participate in this process are still unknown. On the other hand, several cellular proteins potentially involved in the HCV life cycle have been identified through their interactions with viral proteins. For some of these proteins, a functional role in infection was recently confirmed using RNA interference (48). It is very likely that other cellular factors critical to HCV infection have yet to be identified.To gain more insight into cellular mechanisms underlying HCV infection, we made use of brefeldin A (BFA), a macrocyclic lactone of fungal origin that exhibits a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways (30). BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARFs). ARFs are small GTP-binding proteins of the Ras superfamily. They function as regulators of vesicular traffic, actin remodeling, and phospholipid metabolism by recruiting effectors to membranes. BFA does not actually interfere directly with ARF GTPases but rather interferes with their activation by regulators known as guanine nucleotide exchange factors (GEFs) (14, 25). We now report the identification of an ARF GEF as a cellular BFA-sensitive factor that is required for HCV replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号