首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  2021年   6篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有38条查询结果,搜索用时 46 毫秒
31.

Background

Epstein-Barr virus (EBV) and cytomegalovirus (CMV) are persistent herpesviruses that have various immunomodulatory effects on their hosts. Both viruses are usually acquired in infancy in Sub-Saharan Africa, a region where childhood vaccines are less effective than in high income settings. To establish whether there is an association between these two observations, we tested the hypothesis that infection with one or both viruses modulate antibody responses to the T-cell independent meningococcal polysaccharide vaccine and the T-cell dependent measles vaccines.

Methodology/Principal Findings

Infection with EBV and CMV was diagnosed by the presence of virus-specific IgM in the peripheral blood or by the presence of IgG at higher levels than that found in umbilical cord blood. Anti-meningococcus IgG and IgM were quantified by ELISA. Anti-measles antibody responses were quantified by haemagglutinin antibody inhibition assay. Infants infected with EBV had reduced IgG and IgM antibody responses to meningococcal polysaccharides and to measles vaccine. Infection with CMV alone predicted no changes in the response to meningococcal polysaccharide. While CMV alone had no discernable effect on the antibody response to measles, the response of infants infected with both CMV and EBV was similar to that of infants infected with neither, suggesting that the effects of CMV infection countered the effects of EBV on measles antibody responses.

Conclusions

The results of this exploratory study indicate that infection with EBV is associated with reduced antibody responses to polysaccharides and to measles vaccine, but suggest that the response to T-cell dependent antigens such as measles haemagglutinin may be restored by infection with CMV.  相似文献   
32.
BACKGROUND: In a previously published study, we found that large differentiated subpopulations of CD8 T-cells emerged rapidly after CMV infection in young infants and persisted throughout the following year. Here we describe a follow-up study conducted on the same infants to establish whether the differentiated subpopulations continued through the second year post-infection. METHODOLOGY / PRINCIPAL FINDINGS: CMV-specific cells identified using tetramers remained more activated and differentiated than the overall CD8 population. The large subpopulation of differentiated cytotoxic (CD28(-)CD62L(-)Bcl-2(low)CD95(+)perforin(+)) cells that emerged rapidly after infection remained stable after two years. No similar subpopulation was found in CMV-uninfected infants indicating that two years after infection, CMV remained a major factor in driving CD8 T-cell differentiation. Although markers of activation (CD45R0 and HLA-D) declined throughout the first year, HLA-D expression continued to decline during the second year and CD45R0 expression increased slightly. The age-related increase in IFNgamma response observed during the first year continued but was non-significant during the second year, indicating that the rate of functional improvement had slowed substantially. CONCLUSIONS / SIGNIFICANCE: The large differentiated subpopulations of CD8 T-cells that had emerged immediately after CMV infection persisted through the second year post-infection, while levels of activation and functional capacity remained fairly constant.  相似文献   
33.
BackgroundSeasonal malaria chemoprevention (SMC) has shown high protective efficacy against clinical malaria and severe malaria in a series of clinical trials. We evaluated the effectiveness of SMC treatments against clinical malaria when delivered at scale through national malaria control programmes in 2015 and 2016.Methods and findingsCase–control studies were carried out in Mali and The Gambia in 2015, and in Burkina Faso, Chad, Mali, Nigeria, and The Gambia in 2016. Children aged 3–59 months presenting at selected health facilities with microscopically confirmed clinical malaria were recruited as cases. Two controls per case were recruited concurrently (on or shortly after the day the case was detected) from the neighbourhood in which the case lived. The primary exposure was the time since the most recent course of SMC treatment, determined from SMC recipient cards, caregiver recall, and administrative records. Conditional logistic regression was used to estimate the odds ratio (OR) associated with receipt of SMC within the previous 28 days, and SMC 29 to 42 days ago, compared with no SMC in the past 42 days. These ORs, which are equivalent to incidence rate ratios, were used to calculate the percentage reduction in clinical malaria incidence in the corresponding time periods. Results from individual countries were pooled in a random-effects meta-analysis. In total, 2,126 cases and 4,252 controls were included in the analysis. Across the 7 studies, the mean age ranged from 1.7 to 2.4 years and from 2.1 to 2.8 years among controls and cases, respectively; 42.2%–50.9% and 38.9%–46.9% of controls and cases, respectively, were male. In all 7 individual case–control studies, a high degree of personal protection from SMC against clinical malaria was observed, ranging from 73% in Mali in 2016 to 98% in Mali in 2015. The overall OR for SMC within 28 days was 0.12 (95% CI: 0.06, 0.21; p < 0.001), indicating a protective effectiveness of 88% (95% CI: 79%, 94%). Effectiveness against clinical malaria for SMC 29–42 days ago was 61% (95% CI: 47%, 72%). Similar results were obtained when the analysis was restricted to cases with parasite density in excess of 5,000 parasites per microlitre: Protective effectiveness 90% (95% CI: 79%, 96%; P<0.001), and 59% (95% CI: 34%, 74%; P<0.001) for SMC 0–28 days and 29–42 days ago, respectively. Potential limitations include the possibility of residual confounding due to an association between exposure to malaria and access to SMC, or differences in access to SMC between patients attending a clinic and community controls; however, neighbourhood matching of cases and controls, and covariate adjustment, attempted to control for these aspects, and the observed decline in protection over time, consistent with expected trends, argues against a major bias from these sources.ConclusionsSMC administered as part of routine national malaria control activities provided a very high level of personal protection against clinical malaria over 28 days post-treatment, similar to the efficacy observed in clinical trials. The case–control design used in this study can be used at intervals to ensure SMC treatments remain effective.

Using case-control studies, Matthew Cairns and colleagues investigate the effectiveness of seasonal malaria chemoprevention against clinical malaria in children in Burkina Faso, Chad, Mali, Nigeria and The Gambia.  相似文献   
34.
Many human T-cell responses specific for epitopes in Plasmodium falciparum have been described, but none has yet been shown to be predictive of protection against natural malaria infection. Here we report a peptide-specific T-cell assay that is strongly associated with protection of humans in The Gambia, West Africa, from both malaria infection and disease. The assay detects interferon-gamma-secreting CD4(+) T cells specific for a conserved sequence from the circumsporozoite protein, which binds to many human leukocyte antigen (HLA)-DR types. The correlation was observed using a cultured, rather than an ex vivo, ELISPOT assay that measures central memory-'type T cells rather than activated effector T cells. These findings provide direct evidence for a protective role for CD4(+) T cells in humans, and a precise target for the design of improved vaccines against P. falciparum.  相似文献   
35.
New strategies are required to identify the most important targets of protective immunity in complex eukaryotic pathogens. Natural selection maintains allelic variation in some antigens of the malaria parasite Plasmodium falciparum. Analysis of allele frequency distributions could identify the loci under most intense selection. The merozoite surface protein 1 (Msp1) is the most-abundant surface component on the erythrocyte-invading stage of P. falciparum. Immunization with whole Msp1 has protected monkeys completely against homologous and partially against non-homologous parasite strains. The single-copy msp1 gene, of about 5 kilobases, has highly divergent alleles with stable frequencies in endemic populations. To identify the region of msp1 under strongest selection to maintain alleles within populations, we studied multiple intragenic sequence loci in populations in different regions of Africa and Southeast Asia. On both continents, the locus with the lowest inter-population variance in allele frequencies was block 2, indicating selection in this part of the gene. To test the hypothesis of immune selection, we undertook a large prospective longitudinal cohort study. This demonstrated that serum IgG antibodies against each of the two most frequent allelic types of block 2 of the protein were strongly associated with protection from P. falciparum malaria.  相似文献   
36.

Background

The identification of Mycobacterium-tuberculosis (Mtb) infected individuals remains a challenge due to an insufficient understanding of immune responses detected with the current diagnostic tests for latent tuberculosis i.e. the tuberculin skin test (TST) or IFN–γ release assays (IGRAs) and an inability to distinguish infection stages with current immunologic assays. Further classification based on markers other than IFN–γ may help to define markers of early Mtb infection.

Methods

We assessed the TST status of Mtb-exposed household contacts at baseline and at 6 months. Contacts were classified into those with initial positive TST (TST+); those with baseline negative TST but TST conversion at 6 months (TST converters, TSTC) and those with persistently negative TST (PTST). We assessed their short- and long-term immune responses to PPD and ESAT–6/CFP–10 (EC) via IFN–γ ELISPOT and a multiplex cytokine array in relation to TST status and compared them to those of TB cases to identify immune profiles associated with a spectrum of infection stages.

Results

After 1 and 6 days stimulation with EC, 12 cytokines (IFN–γ, IL–2, IP–10, TNF–α, IL–13, IL–17, IL–10, GMCSF, MIP–1β, MCP–3, IL–2RA and IL–1A) were not different in TSTC compared to TST+ suggesting that robust adaptive Mtb-specific immune responses precede TST conversion. Stratifying contacts by baseline IFN–γ ELISPOT to EC in combination with TST results revealed that IP–10 and IL–17 were highest in the group of TST converters with positive baseline ELISPOT, suggesting they might be markers for recent infection.

Conclusion

We describe a detailed analysis of Mtb-specific biomarker profiles in exposed household contacts in a TB endemic area that provides insights into the dynamic immune responses to Mtb infection and may help to identify biomarkers for ‘at-risk’ populations beyond TST and IGRA.  相似文献   
37.
38.
In sub-Saharan Africa, most transmission of mosquito-transmitted diseases, such as malaria or dengue, occurs within or around houses. Preventing mosquito house entry and reducing mosquito production around the home would help reduce the transmission of these diseases. Based on recent research, we make key recommendations for reducing the threat of mosquito-transmitted diseases through changes to the built environment. The mnemonic, DELIVER, recommends the following best practices: (i) Doors should be screened, self-closing and without surrounding gaps; (ii) Eaves, the space between the wall and roof, should be closed or screened; (iii) houses should be Lifted above the ground; (iv) Insecticide-treated nets should be used when sleeping in houses at night; (v) houses should be Ventilated, with at least two large-screened windows to facilitate airflow; (vi) Environmental management should be conducted regularly inside and around the home; and (vii) Roofs should be solid, rather than thatch. DELIVER is a package of interventions to be used in combination for maximum impact. Simple changes to the built environment will reduce exposure to mosquito-transmitted diseases and help keep regions free from these diseases after elimination.This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases''.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号