全文获取类型
收费全文 | 2113篇 |
免费 | 210篇 |
国内免费 | 1篇 |
专业分类
2324篇 |
出版年
2021年 | 23篇 |
2019年 | 12篇 |
2018年 | 16篇 |
2017年 | 19篇 |
2016年 | 27篇 |
2015年 | 57篇 |
2014年 | 66篇 |
2013年 | 80篇 |
2012年 | 99篇 |
2011年 | 91篇 |
2010年 | 77篇 |
2009年 | 54篇 |
2008年 | 87篇 |
2007年 | 96篇 |
2006年 | 104篇 |
2005年 | 97篇 |
2004年 | 83篇 |
2003年 | 77篇 |
2002年 | 107篇 |
2001年 | 60篇 |
2000年 | 57篇 |
1999年 | 51篇 |
1998年 | 53篇 |
1997年 | 36篇 |
1996年 | 42篇 |
1995年 | 33篇 |
1994年 | 34篇 |
1993年 | 20篇 |
1992年 | 37篇 |
1991年 | 45篇 |
1990年 | 39篇 |
1989年 | 39篇 |
1988年 | 32篇 |
1987年 | 29篇 |
1986年 | 24篇 |
1985年 | 20篇 |
1984年 | 36篇 |
1983年 | 21篇 |
1982年 | 36篇 |
1981年 | 25篇 |
1980年 | 18篇 |
1979年 | 13篇 |
1978年 | 22篇 |
1977年 | 13篇 |
1976年 | 13篇 |
1975年 | 21篇 |
1974年 | 13篇 |
1972年 | 21篇 |
1970年 | 15篇 |
1969年 | 14篇 |
排序方式: 共有2324条查询结果,搜索用时 15 毫秒
61.
62.
Anja Vogel Nico Eisenhauer Alexandra Weigelt Michael Scherer‐Lorenzen 《Global Change Biology》2013,19(9):2795-2803
Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non‐additive way. We studied early‐stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community‐specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community‐specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community‐specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community‐specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes. 相似文献
63.
Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif 总被引:4,自引:0,他引:4
Transfer of budding Candida albicans yeast cells from the rich, complex medium YEPD to the defined tissue culture medium RPMl 1640 (RPMI) at 37°C and 5% CO2 causes rapid onset of hyphal induction. Among the genes induced under these conditions are hyphal-specific genes as well as genes expressed in response to changes in temperature, CO2 and specific media components. A cDNA library constructed from cells incubated for 20 min in RPMI was differentially screened with yeast (YEPD)- and hyphal (RPMI)-specific probes resuming in identification of a gene expressed in response to culture conditions but not regulated by the yeast-hyphal transition. The deduced gene product displays significant identity to Saccharomyces cerevisiaeα-agglutinin, encoded by AGα1, an adhesion glycoprotein that mediates mating of haploid cells. The presence of this gene in C albicans is curious since the organism has not been observed to undergo meiosis. We designate the C. albicans gene ALS1 (for a gglutinin-l ike s equence). While the N- and C-termini of the predicted 1260-amino-acid ALS1 protein resemble those of the 650-amino-acid AGα1, ALS1 contains a central domain of tandem repeats consisting of a highly conserved 36-amino-acid sequence not present in AGb1. These repeats are also present on the nucleotide level as a highly conserved 108bp motif. Southern and Northern blot analyses indicate a family of C. albicans genes that contain the tandem repeat motif; at least one gene in addition to ALS1 is expressed under conditions similar to those for ALS1 expression. Genomic Southern blots from several C. albicans isolates indicate that the number of copies of the tandem repeat element in ALS1 differs across strains and. In some cases, between ALS1 alleles in the same strain, suggesting a strain-dependent variability in ALS1 protein size. Potential roles for the ALS1 protein are discussed. 相似文献
64.
Background
The ‘Solnhofen Limestone’ beds of the Southern Franconian Alb, Bavaria, southern Germany, have for centuries yielded important pterosaur specimens, most notably of the genera Pterodactylus and Rhamphorhynchus. Here we describe a new genus of non-pterodactyloid pterosaur based on an extremely well preserved fossil of a young juvenile: Bellubrunnus rothgaengeri (gen. et sp. nov.).Methodology/Principal Findings
The specimen was examined firsthand by all authors. Additional investigation and photography under UV light to reveal details of the bones not easily seen under normal lighting regimes was completed.Conclusions/Significance
This taxon heralds from a newly explored locality that is older than the classic Solnhofen beds. While similar to Rhamphorhynchus, the new taxon differs in the number of teeth, shape of the humerus and femur, and limb proportions. Unlike other derived non-pterodacytyloids, Bellubrunnus lacks elongate chevrons and zygapophyses in the tail, and unlike all other known pterosaurs, the wingtips are curved anteriorly, potentially giving it a unique flight profile. 相似文献65.
Dan E. Wells Laura Gutierrez Zhenkang Xu Vladimir Krylov Jaroslav Macha Kerstin P. Blankenburg Matthew Hitchens Larry J. Bellot Mary Spivey Derek L. Stemple Andria Kowis Yuan Ye Shiran Pasternak Jenetta Owen Thu Tran Renata Slavikova Lucie Tumova Tereza Tlapakova Eva Seifertova Steven E. Scherer Amy K. Sater 《Developmental biology》2011,(1):507
We present a genetic map for Xenopus tropicalis, consisting of 2886 Simple Sequence Length Polymorphism (SSLP) markers. Using a bioinformatics-based strategy, we identified unique SSLPs within the X. tropicalis genome. Scaffolds from X. tropicalis genome assembly 2.0 (JGI) were scanned for Simple Sequence Repeats (SSRs); unique SSRs were then tested for amplification and polymorphisms using DNA from inbred Nigerian and Ivory Coast individuals. Thus identified, the SSLPs were genotyped against a mapping cross panel of DNA samples from 190 F2 individuals. Nearly 4000 SSLPs were genotyped, yielding a 2886-marker genetic map consisting of 10 major linkage groups between 73 and 132 cM in length, and 4 smaller linkage groups between 7 and 40 cM. The total effective size of the map is 1658 cM, and the average intermarker distance for each linkage group ranged from 0.27 to 0.75 cM. Fluorescence In Situ Hybridization (FISH) was carried out using probes for genes located on mapped scaffolds to assign linkage groups to chromosomes. Comparisons of this map with the X. tropicalis genome Assembly 4.1 (JGI) indicate that the map provides representation of a minimum of 66% of the X. tropicalis genome, incorporating 758 of the approximately 1300 scaffolds over 100,000 bp. The genetic map and SSLP marker database constitute an essential resource for genetic and genomic analyses in X. tropicalis. 相似文献
66.
Nowaczyk MM Hebeler R Schlodder E Meyer HE Warscheid B Rögner M 《The Plant cell》2006,18(11):3121-3131
Photosystem II (PSII) performs one of the key reactions on our planet: the light-driven oxidation of water. This fundamental but very complex process requires PSII to act in a highly coordinated fashion. Despite detailed structural information on the fully assembled PSII complex, the dynamic aspects of formation, processing, turnover, and degradation of PSII with at least 19 subunits and various cofactors are still not fully understood. Transient complexes are especially difficult to characterize due to low abundance, potential heterogeneity, and instability. Here, we show that Psb27 is involved in the assembly of the water-splitting site of PSII and in the turnover of the complex. Psb27 is a bacterial lipoprotein with a specific lipid modification as shown by matrix-assisted laser-desorption ionization time of flight mass spectrometry. The combination of HPLC purification of four different PSII subcomplexes and (15)N pulse label experiments revealed that lipoprotein Psb27 is part of a preassembled PSII subcomplex that represents a distinct intermediate in the repair cycle of PSII. 相似文献
67.
Genomic duplication, followed by divergence, contributes to organismal evolution. Several mechanisms, such as exon shuffling and alternative splicing, are responsible for novel gene functions, but they generate homologous domains and do not usually lead to drastic innovation. Major novelties can potentially be introduced by frameshift mutations and this idea can explain the creation of novel proteins. Here, we employ a strategy using simulated protein sequences and identify 470 human and 108 mouse frameshift events that originate new gene segments. No obvious interspecies overlap was observed, suggesting high rates of acquisition of evolutionary events. This inference is supported by a deficiency of TpA dinucleotides in the protein-coding sequences, which decreases the occurrence of translational termination, even on the complementary strand. Increased usage of the TGA codon as the termination signal in newer genes also supports our inference. This suggests that tolerated frameshift changes are a prevalent mechanism for the rapid emergence of new genes and that protein-coding sequences can be derived from existing or ancestral exons rather than from events that result in noncoding sequences becoming exons. 相似文献
68.
The optical spectra of the reaction center (RC) of Rhodopseudomonas viridis including absorption (A), linear dichrosism (LD), circular dichroism (CD), absorption-detected magnetic resonance (ADMR) and its linear dichroism (LD-ADMR) are simulated by an exciton model. It involves the Qy transitions of six prosthetic groups: four (bacteriochlorophyll-b molecules, two bacteriopheophytin-b molecules and the Soret bands By of the special-pair pigments, which couple most strongly with the corresponding Qy transitions. For the ADMR-spectra additional excitations of the special-pair triplet are introduced. While interactions between the Qy transitions and the By transitions are in principle determined from the structural arrangement of the pigments, the interactions to the other states are adjusted to fit the spectral features for the various transitions. The interaction of the newly introduced states are interpreted in terms of a simple model. 相似文献
69.
Britta Spanier Mandy Starke Fabian Higel Siegfried Scherer Thilo M. Fuchs 《Applied and environmental microbiology》2010,76(18):6277-6285
Caenorhabditis elegans is a validated model to study bacterial pathogenicity. We report that Yersinia enterocolitica strains (biovar 2, serovar O:9) and WA314 (biovar 1B, serovar O:8) kill C. elegans when feeding on the pathogens for at least 15 min before transfer to the feeding strain Escherichia coli OP50. The killing by Yersinia enterocolitica requires viable bacteria and, in contrast to that by Yersinia pestis and Yersinia pseudotuberculosis strains, is biofilm independent. The deletion of tcaA encoding an insecticidal toxin resulted in an OP50-like life span of C. elegans, indicating an essential role of TcaA in the nematocidal activity of Y. enterocolitica. TcaA alone is not sufficient for nematocidal activity because E. coli DH5α overexpressing TcaA did not result in a reduced C. elegans life span. Spatial-temporal analysis of C. elegans infected with green fluorescent protein-labeled Y. enterocolitica strains showed that Y. enterocolitica colonizes the nematode intestine, leading to an extreme expansion of the intestinal lumen. By low-dose infection with W22703 or DH5α followed by transfer to E. coli OP50, proliferation of Y. enterocolitica, but not E. coli, in the intestinal lumen of the nematode was observed. The titer of W22703 cells within the worm increased to over 106 per worm 4 days after infection while a significantly lower number of a tcaA knockout mutant was recovered. A strong expression of tcaA was observed during the first 5 days of infection. Y. enterocolitica WA314 (biovar 1B, serovar O:8) mutant strains lacking the yadA, inv, yopE, and irp1 genes known to be important for virulence in mammals were not attenuated or only slightly attenuated in their toxicity toward the nematode, suggesting that these factors do not play a significant role in the colonization and persistence of this pathogen in nematodes. In summary, this study supports the hypothesis that C. elegans is a natural host and nutrient source of Y. enterocolitica.Yersinia enterocolitica belongs to the family of Enterobacteriaceae and is a psychrotolerant human pathogen that causes gastrointestinal syndromes ranging from acute enteritis to mesenteric lymphadenitis ( W227035). It infects a number of mammals, and swine was identified as a major source for human infection (6). A multiphasic life cycle, which comprises a free-living phase and several host-associated phases, including cold-blooded and warm-blooded hosts, appears to be characteristic for biovars 1B and 2 to 5 of Y. enterocolitica (7, 24).Nonmammalian host organisms including Dictyostelium discoideum, Drosophila melanogaster, or Caenorhabditis elegans are increasingly used to study host-pathogen interactions (16, 26). Due to the obvious parallels between the mammalian and invertebrate defense mechanisms, it has been suggested that the bacteria-invertebrate interaction has shaped the evolution of microbial pathogenicity (53). Several human pathogens including Gram-positive and Gram-negative bacteria infect and kill the soil nematode C. elegans when they are supplied as a nutrient source (42). For example, Streptococcus pneumoniae (4), Listeria monocytogenes (50), extraintestinal Escherichia coli (15), and Staphylococcus aureus (43) but not Bacillus subtilis have been shown to kill the nematode. Upon infection of C. elegans with Enterococcus faecalis, Gram-positive virulence-related factors as well as putative antimicrobials have been identified (20, 35). The extensive conservation in virulence mechanisms directed against invertebrates as well as mammals was demonstrated using a screen with Pseudomonas aeruginosa (30). In this study, 10 of 13 genes whose knockout attenuated the nematode killing were also required for full virulence in a mouse model, confirming the suitability of the C. elegans model to study bacterial pathogenicity. C. elegans is also colonized by Salmonella enterica serovar Typhimurium (S. Typhimurium). This process requires Salmonella virulence factors and was used to study the innate immune response of the nematode (1, 2, 49).The effect of pathogenic Yersinia spp. on C. elegans has also been investigated. It could be demonstrated that both Yersinia pestis and Yersinia pseudotuberculosis block food intake by creating a biofilm around the worm''s mouth (13, 27). This biofilm formation requires the hemin storage locus (hms) and has been suggested to be responsible for the blockage of the digestive tract following uptake by fleas, thus acting as a bacterial defense against predation by invertebrates. In a study with 40 Y. pseudotuberculosis strains, one-quarter of them caused an infection of C. elegans by biofilm formation on the worm head (27). In contrast, a similar effect was not observed following nematode infection with 15 Y. enterocolitica strains. Using a Y. pestis strain lacking the hms genes, it could be demonstrated that this mutant can infect and kill the nematode by a biofilm-independent mechanism that includes the accumulation of Y. pestis in the intestine of the worm (47). This pathogenesis model was applied to show that putative virulence factors such as YapH, OmpT, or a metalloprotease, Y3857, but not the virulence plasmids pCD1 and pPCP1, are required for Y. pestis virulence in C. elegans. Six yet unknown genes required for full virulence in C. elegans were also identified, and one of them appeared to be a virulence factor in the mouse infection model.C. elegans has not been used to study the pathogenicity properties of Y. enterocolitica, mainly due to the fact that many of its virulence factors are upregulated at 37°C in comparison to growth at lower temperatures while C. elegans cannot be cultivated at temperatures above 25°C. In this study, we examined for the first time the infection of C. elegans by Y. enterocolitica strains, demonstrating that this pathogen colonizes and kills C. elegans and that the insecticidal toxin TcaA, which is expressed only at ambient temperature, is required for full nematocidal activity. 相似文献
70.
Pascale Calabrese Pierre Baconnier Aicha Laouani Julie Fontecave-Jallon Pierre-Yves Guméry André Eberhard Gila Benchetrit 《Acta biotheoretica》2010,58(2-3):265-275
To study the interaction of forces that produce chest wall motion, we propose a model based on the lever system of Hillman and Finucane (J Appl Physiol 63(3):951–961, 1987) and introduce some dynamic properties of the respiratory system. The passive elements (rib cage and abdomen) are considered as elastic compartments linked to the open air via a resistive tube, an image of airways. The respiratory muscles (active) force is applied to both compartments. Parameters of the model are identified in using experimental data of airflow signal measured by pneumotachography and rib cage and abdomen signals measured by respiratory inductive plethysmography on eleven healthy volunteers in five conditions: at rest and with four level of added loads. A breath by breath analysis showed, whatever the individual and the condition are, that there are several breaths on which the airflow simulated by our model is well fitted to the airflow measured by pneumotachography as estimated by a determination coefficient R 2 ≥ 0.70. This very simple model may well represent the behaviour of the chest wall and thus may be useful to interpret the relative motion of rib cage and abdomen during quiet breathing. 相似文献