首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1286篇
  免费   69篇
  1355篇
  2021年   9篇
  2017年   11篇
  2016年   13篇
  2015年   30篇
  2014年   36篇
  2013年   42篇
  2012年   54篇
  2011年   51篇
  2010年   40篇
  2009年   33篇
  2008年   52篇
  2007年   64篇
  2006年   59篇
  2005年   60篇
  2004年   61篇
  2003年   43篇
  2002年   67篇
  2001年   19篇
  2000年   17篇
  1999年   14篇
  1998年   31篇
  1997年   16篇
  1996年   29篇
  1995年   22篇
  1994年   24篇
  1993年   13篇
  1992年   17篇
  1991年   35篇
  1990年   21篇
  1989年   17篇
  1988年   17篇
  1987年   14篇
  1986年   10篇
  1985年   13篇
  1984年   22篇
  1983年   13篇
  1982年   20篇
  1981年   19篇
  1980年   10篇
  1979年   9篇
  1978年   15篇
  1976年   8篇
  1975年   15篇
  1974年   8篇
  1972年   19篇
  1971年   9篇
  1970年   13篇
  1969年   13篇
  1964年   9篇
  1961年   8篇
排序方式: 共有1355条查询结果,搜索用时 15 毫秒
61.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740(+)-P740) and (F(A/B)(-)-F(A/B)) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740(+)A(1)(-)-P740A(1)) and ((3)P740-P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A(1)(-)), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450+/-10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000+/-4000 M(-1) cm(-1) at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1 : to approximately 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   
62.
63.
The cytosolic chaperonin containing TCP-1 (CCT) is known to keep fold cytoskeletal proteins and is involved in the proper organization of the cytoskeleton. These studies are based on the assumption that growth responses linked to structural rearrangement of the plant cytoskeleton include the action of CCT and the need for newly synthesized tubulin. The presence of the α- and ɛ- subunits of CCT was investigated in soluble fractions of protein extracts from maize mesocotyls and coleoptiles at distinct growth stages. The CCT-subunits, tubulins and actin decreased in the coleoptile in response to far-red light. In addition, independent from light treatment, the amount of CCTɛ abundance declined with age in coleoptiles and mesocotyls between 2 and 4.5 days after sowing. In contrast to CCTɛ, no significant light regulation of CCTα was found in the mesocotyl. In two day old, light-grown rapidly elongating coleoptiles part of the CCTα subunit and the bulk of actin and tubulin was found shifted into fractions of high molecular weight complexes when compared to slowly elongating, dark grown coleoptiles. In 4.5 day old, etiolated and elongating coleoptiles, part of both CCT-subunits and cytoskeleton proteins were found in fractions of high molecular weight. A complete disappearance of these polypeptides was observed in old far-red irradiated growth-arrested coleoptiles. CCTɛ was found to be co-localized to microtubular structures and to the nucleus. We conclude from our data that abundance of CCT-subunits in soluble extracts is dependent on age and light treatment, but independent from the growth stage of mesocotyl and coleoptile.  相似文献   
64.
65.
Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha   总被引:8,自引:0,他引:8  
Cells of Nitrosomonas eutropha strain N904 that were denitrifying under anoxic conditions with hydrogen as electron donor and nitrite as electron acceptor were unable to utilize ammonium (ammonia) as an energy source. The recovery of ammonia oxidation activity was dependent on the presence of NO2. Anaerobic ammonia oxidation activity was observed in a helium atmosphere supplemented with 25 ppm NO2 after 20 h. Ammonia oxidation activity was detected after 2–3 days using an oxic atmosphere with 25 ppm NO2. In contrast, ammonia consumption started after 8–9 days under oxic conditions without the addition of NO2; in this case, small amounts of NO and NO2 were detected and their concentrations increased with increasing ammonia oxidation activities. Hardly any ammonia oxidation was detected when nitrogen oxides were removed by intensive aeration. It would seem, therefore, that NO2 is the master regulatory signal for ammonia oxidation in Nitrosomonas eutropha. Anaerobic ammonia oxidation activity was inhibited by the addition of NO. This inhibition was partly compensated by either increasing the NO2 concentration or by using 2,3-dimercapto-1-propane-sulfonic acid as a NO binding substrate. DMPS was inhibitory to nitrification under oxic conditions, while increased amounts of NO or NO2 led to increased oxidation activities.  相似文献   
66.
The flacca tomato (Lycopersicon esculentum) mutant displays a wilty phenotype as a result of abscisic acid (ABA) deficiency. The Mo cofactor (MoCo)-containing aldehyde oxidases (AO; EC 1.2.3.1) are thought to play a role in the final oxidation step required for ABA biosynthesis. AO and related MoCo-containing enzymes xanthine dehydrogenase (XDH; EC 1.2.1.37) and nitrate reductase (EC 1.6.6.1) were examined in extracts of the flacca tomato genotype and of wild-type (WT) roots and shoots. The levels of MoCo were found to be similar in both genotypes. No significant XDH or AO (MoCo-containing hydroxylases) activities were detected in flacca leaves; however, the mutant exhibited considerable MoCo-containing hydroxylase activity in the roots, which contained notable amounts of ABA. Native western blots probed with an antibody to MoCo-containing hydroxylases revealed substantial, albeit reduced, levels of cross-reactive protein in the flacca mutant shoots and roots. The ABA xylem-loading rate was significantly lower than that in the WT, indicating that the flacca is also defective in ABA transport to the shoot. Significantly, in vitro sulfurylation with Na2S reactivated preexisting XDH and AO proteins in extracts from flacca, particularly from the shoots, and superinduced the basal-level activity in the WT extracts. The results indicate that in flacca, MoCo-sulfurylase activity is impaired in a tissue-dependent manner.  相似文献   
67.
Summary The pattern of neuroblast divisions was studied in thoracic and abdominal neuromeres of wild-type Drosophila melanogaster embryos stained with a monoclonal antibody directed against a chromatin-associated antigen. Since fixed material was used, our conclusions are based upon the statistical evaluation of a large number of accurately staged embryos, covering the stages between the formation of the cephalic furrow up to shortened germ band. Our observations point to a rather stereotypic pattern of proliferation, consisting of several parasynchronous cycles of division. The data suggest that all SI neuroblasts divide at least eight times, all SII neuroblasts six or seven times and all SIII neuroblasts at least five times. This conclusion is based on the mapping of mitotic neuroblasts and is supported by the progressive reduction of the neuroblast volume and by the results of cell countings performed on embryos of increasing age. No conclusive evidence was obtained concerning the fate of the neuroblasts after their last mitosis, i.e. it cannot be decided whether the neuroblasts degenerate or become incorporated as inconspicuous cells in the larval ventral cord. The duration of the cycles of division of the neuroblasts was found to be 40–50 min each, while in the case of ganglion mother cells about 100 min are required to complete one cell cycle.  相似文献   
68.
Terpenoid precursor biosynthesis occurs in human and many pathogenic organisms via the mevalonate and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways, respectively. We determined the X-ray structure of the Fe/S containing (E)-4-hydroxy-3-methyl-but-2-enyl-diphosphate reductase (LytB) of the pathogenic protozoa Plasmodium falciparum which catalyzes the terminal step of the MEP pathway. The cloverleaf fold and the active site of P. falciparum LytB corresponds to those of the Aquifex aeolicus and Escherichia coli enzymes. Its distinct electron donor [2Fe–2S] ferredoxin was modeled to its binding site by docking calculations. The presented structural data provide a platform for a rational search of anti-malarian drugs.  相似文献   
69.
The p14ARF protein is a well‐known regulator of p53‐dependent and p53‐independent tumor‐suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo‐ and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C‐terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF. In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF. Genotoxic stress causes augmented interaction between PRMT1 and p14ARF, accompanied by arginine methylation of p14ARF. PRMT1‐dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53‐independent apoptosis. This PRMT1‐p14ARF cooperation is cancer‐relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1‐mediated arginine methylation is an important trigger for p14ARF’s stress‐induced tumor‐suppressive function.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号