首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   124篇
  国内免费   1篇
  2022年   8篇
  2021年   15篇
  2019年   12篇
  2018年   14篇
  2016年   22篇
  2015年   22篇
  2014年   21篇
  2013年   52篇
  2012年   42篇
  2011年   28篇
  2010年   16篇
  2009年   13篇
  2008年   41篇
  2007年   28篇
  2006年   34篇
  2005年   34篇
  2004年   31篇
  2003年   20篇
  2002年   51篇
  2001年   44篇
  2000年   29篇
  1999年   27篇
  1998年   13篇
  1997年   8篇
  1996年   22篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   15篇
  1991年   27篇
  1990年   15篇
  1989年   11篇
  1988年   13篇
  1987年   9篇
  1986年   15篇
  1985年   13篇
  1984年   8篇
  1983年   19篇
  1982年   19篇
  1981年   8篇
  1980年   15篇
  1979年   17篇
  1977年   11篇
  1976年   12篇
  1975年   14篇
  1974年   10篇
  1973年   13篇
  1972年   11篇
  1968年   10篇
  1967年   9篇
排序方式: 共有1100条查询结果,搜索用时 15 毫秒
141.
Peroxiredoxins (Prdxs), a family of antioxidant and redox-signaling proteins, are plentiful within the heart; however, their cardiac functions are poorly understood. These studies were designed to characterize the complex changes in Prdxs induced by oxidant stress in rat myocardium. Hydrogen peroxide, a Prdx substrate, was used as the model oxidant pertinent to redox signaling during health and to injury at higher concentrations. Rat hearts were aerobically perfused with a broad concentration range of hydrogen peroxide by the Langendorff method, homogenized, and analyzed by immunoblotting. Heart extracts were also analyzed by size-exclusion chromatography under nondenaturing conditions. Hydrogen peroxide-induced changes in disulfide bond formation, nonreversible oxidation of cysteine (hyperoxidation), and subcellular localization were determined. Hydrogen peroxide induced an array of changes in the myocardium, including formation of disulfide bonds that were intermolecular for Prdx1, Prdx2, and Prdx3 but intramolecular within Prdx5. For Prdx1, Prdx2, and Prdx5, disulfide bond formation can be approximated to an EC(50) of 10-100, 1-10, and 100-1,000 microM peroxide, respectively. Hydrogen peroxide induced hyperoxidation, not just within monomeric Prdx (by SDS-PAGE), but also within Prdx disulfide dimers, and reflects a flexibility within the dimeric unit. Prdx oxidation was also associated with movement from the cytosolic to the membrane and myofilament-enriched fractions. In summary, Prdxs undergo a complex series of redox-dependent structural changes in the heart in response to oxidant challenge with its substrate hydrogen peroxide.  相似文献   
142.
143.
An oxygen-affinity-modifying drug, voxelotor, has very recently been approved by the FDA for treatment of sickle cell disease. The proposed mechanism of action is by preferential binding of the drug to the R quaternary conformation, which cannot copolymerize with the T conformation to form sickle fibers. Here, we report widely different oxygen dissociation and oxygen association curves for normal blood in the presence of voxelotor and interpret the results in terms of the allosteric model of Monod, Wyman, and Changeux with the addition of drug binding. The model does remarkably well in quantitatively explaining a complex data set with just the addition of drug binding and dissociation rates for the R and T conformations. Whereas slow dissociation of the drug from R results in time-independent dissociation curves, the changing association curves result from slow dissociation of the drug from T, as well as extremely slow binding of the drug to T. By calculating true equilibrium curves from the model parameters, we show that there would be a smaller decrease in oxygen delivery from the left shift in the dissociation curve caused by drug binding if drug binding and dissociation for both R and T were rapid. Our application of the Monod, Wyman, and Changeux model demonstrates once more its enormous power in explaining many different kinds of experimental results for hemoglobin. It should also be helpful in analyzing oxygen binding and in vivo delivery in future investigations of oxygen-affinity-modifying drugs for sickle cell disease.  相似文献   
144.
Mitogen-activated protein kinases are regulated by occupancy at two phosphorylation sites near the active site cleft. Previous studies using hydrogen exchange to investigate the canonical mitogen-activated protein kinase, extracellular signal-regulated protein kinase-2, have shown that phosphorylation alters backbone conformational mobility >10 Å distal to the site of phosphorylation, including decreased mobility within amino acids 102–105 and increased mobility within 108–109. To further describe changes after enzyme activation, site-directed spin labeling at amino acids 101, 105–109, 111, 112 and electron paramagnetic resonance spectroscopy were used to investigate this region. The anisotropic hyperfine splitting of the spin labels in glassy samples was unchanged by phosphorylation, consistent with previous crystallographic studies that indicate no structural change in this region. At positions 101, 111, and 112, the mobility of the spin label was unchanged by diphosphorylation, consistent with little or no conformational change. However, diphosphorylation caused small but significant changes in rotational diffusion rates at positions 105–108 and altered proportions of probe in a motionally constrained state at positions 105, 107, and 109. Thus, electron paramagnetic resonance indicates reproducible changes in nanosecond side-chain mobilities at specific residues within the interdomain region, far from the site of phosphorylation and conformational change.  相似文献   
145.
We tested the potential for the Japanese beetle, Popillia japonica Newman, to habituate to a neem-based feeding deterrent applied to foliage of linden, Tilia cordata L., a preferred host for the adults. Female beetles' consumption of control foliage versus foliage treated with either a low or high rate of neem insecticide, corresponding to 9 or 39 pm azadirachtin, respectively, was tested in a series of 4-h choice or no-choice tests over four successive days. In another experiment, females were conditioned for 22 h with either control foliage, leaves treated with the low rate, or a mixture of both treated and untreated leaves. Deterrence of either the low or high rate of neem to these beetles was then evaluated in choice tests with control foliage, as before. In choice tests, mean consumption of control foliage was always greater than for treated foliage, regardless of rate. There was, however, proportionately more feeding on foliage treated with the high rate upon successive exposures. In no-choice tests, beetles initially deterred by the low rate were not significantly deterred by that rate by the third and fourth days of the experiment. Finally, beetles conditioned by exposure to leaves treated with the low rate were not deterred by that rate in a subsequent choice test, although they were deterred by the higher rate. Despite these trends, we suggest that Japanese beetles' polyphagy and mobility probably would reduce the likelihood for habituation to neem-based feeding deterrents in the field.  相似文献   
146.
147.
Coccidioidomycosis (Valley Fever) represents a serious threat to inhabitants of endemic areas of North America. Despite successful clinical isolations of the fungal etiological agent, Coccidioides spp., the screening of environmental samples has had low effectiveness, mainly because of the poor characterization of Coccidioides ecological niche. We explored Valle de las Palmas, Baja California, Mexico, a highly endemic area near the U.S.–Mexico border, where we previously detected Coccidioides via culture-independent molecular methods. By testing the serum from 40-trapped rodents with ELISA, we detected antibodies against Coccidioides in two species: Peromyscus maniculatus and Neotoma lepida. This study comprises the first report of wild rodent serum tested for coccidioidal antibodies, and sets the basis to analyze this pathogen in its natural environment and explore its potential ecological niche.  相似文献   
148.
149.
In the initial stages of pulmonary edema, liquid accumulates in the lung interstitium and appears as cuffs around pulmonary vessels. To determine the pattern, rate, and magnitude of cuff formation, we inflated sheep lungs to capacity with liquid (inflation pressure 19 cmH2O) for 3-300 min. After freezing the lobes in liquid N2, we measured perivascular cuff size and total perivascular volume in frozen blocks of each lobe and compared the results with previous measurements in dog lungs. Total cuff volume in sheep lungs reached a maximum value of 5% of air space volume, compared with 9% in dog lungs. In sheep lungs 94% of vessels greater than or equal to 0.5 mm diam and 16% of smaller vessels were surrounded by cuffs. In dog lungs these values were 99 and 47%, respectively. The ratio of cuff area to vessel area reached a maximum of 2.3 in sheep lungs and 3.4 in dog lungs. In an electrical analogue model designed to simulate cuff growth, estimated interstitial resistance to liquid flow was 6-15 times higher than similar estimates in dog lungs. These species differences might be the result of differences in the composition of the interstitial gel or to differences in the mechanical linkage between the lung parenchyma and vessel wall.  相似文献   
150.
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle’s ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号