首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   26篇
  465篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2017年   6篇
  2016年   8篇
  2015年   15篇
  2014年   19篇
  2013年   28篇
  2012年   28篇
  2011年   32篇
  2010年   22篇
  2009年   13篇
  2008年   24篇
  2007年   15篇
  2006年   29篇
  2005年   17篇
  2004年   22篇
  2003年   16篇
  2002年   15篇
  2001年   6篇
  2000年   10篇
  1999年   12篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1970年   2篇
  1968年   2篇
  1938年   2篇
  1928年   2篇
排序方式: 共有465条查询结果,搜索用时 0 毫秒
61.
Conventional in vivo assays to determine the relative pathogenicity of yeast isolates rely upon the use of a range of mammalian species. The purpose of the work presented here was to investigate the possibility of using an insect (Galleria mellonella) as a model system for in vivo pathogenicity testing. The haemolymph of G. mellonella larvae was inoculated with PBS containing different concentrations of stationary phase yeasts of the genus Candida by injection at the last pro-leg. Larvae were incubated at 30 degrees C and monitored over 72 hours. Results indicate that G. mellonella can be killed by the pathogenic yeast Candida albicans and by a range of other Candida species but not to a significant extent by the yeast Saccharomyces cerevisiae. The kill kinetics for larvae inoculated with clinical and laboratory isolates of C. albicans indicate the former class of isolates to be more pathogenic. Differences in the relative pathogenicity of a range of Candida species may be distinguished using G. mellonella as a model. This work indicates that G. mellonella may be employed to give results consistent with data previously obtained using mammals in conventional in vivo pathogenicity testing. Larvae of G. mellonella are inexpensive to culture, easy to manipulate and their use may reduce the need to employ mammals for routine in vivo pathogenicity testing with a concomitant reduction in mammalian suffering.  相似文献   
62.
The local oxygen tension is a key regulator of the fate of mesenchymal stem cells (MSCs). The objective of this study was to investigate the effect of a low oxygen tension during expansion and differentiation on the proliferation kinetics as well as the subsequent osteogenic and chondrogenic potential of MSCs. We first hypothesised that expansion in a low oxygen tension (5% pO(2)) would improve both the subsequent osteogenic and chondrogenic potential of MSCs compared to expansion in a normoxic environment (20% pO(2)). Furthermore, we hypothesised that chondrogenic differentiation in a low oxygen environment would suppress hypertrophy of MSCs cultured in both pellets and hydrogels used in tissue engineering strategies. MSCs expanded at 5% pO(2) proliferated faster forming larger colonies, resulting in higher cell yields. Expansion at 5% pO(2) also enhanced subsequent osteogenesis of MSCs, whereas differentiation at 5% pO(2) was found to be a more potent promoter of chondrogenesis than expansion at 5% pO(2). Greater collagen accumulation, and more intense staining for collagen types I and X, was observed in pellets maintained at 20% pO(2) compared to 5% pO(2). Both pellets and hydrogels stained more intensely for type II collagen when undergoing chondrogenesis in a low oxygen environment. Differentiation at 5% pO(2) also appeared to inhibit hypertrophy in both pellets and hydrogels, as demonstrated by reduced collagen type X and Alizarin Red staining and alkaline phosphatase activity. This study demonstrates that the local oxygen environment can be manipulated in vitro to either stabilise a chondrogenic phenotype for use in cartilage repair therapies or to promote hypertrophy of cartilaginous grafts for endochondral bone repair strategies.  相似文献   
63.
The function of a number of genes in the gliotoxin biosynthetic cluster (gli) in Aspergillus fumigatus remains unknown. Here, we demonstrate that gliK deletion from two strains of A. fumigatus completely abolished gliotoxin biosynthesis. Furthermore, exogenous H2O2 (1 mM), but not gliotoxin, significantly induced A. fumigatus gliK expression (P = 0.0101). While both mutants exhibited significant sensitivity to both exogenous gliotoxin (P < 0.001) and H2O2 (P < 0.01), unexpectedly, exogenous gliotoxin relieved H2O2-induced growth inhibition in a dose-dependent manner (0 to 10 μg/ml). Gliotoxin-containing organic extracts derived from A. fumigatus ATCC 26933 significantly inhibited (P < 0.05) the growth of the ΔgliK26933 deletion mutant. The A. fumigatus ΔgliK26933 mutant secreted metabolites, devoid of disulfide linkages or free thiols, that were detectable by reverse-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry with m/z 394 to 396. These metabolites (m/z 394 to 396) were present at significantly higher levels in the culture supernatants of the A. fumigatus ΔgliK26933 mutant than in those of the wild type (P = 0.0024 [fold difference, 24] and P = 0.0003 [fold difference, 9.6], respectively) and were absent from A. fumigatus ΔgliG. Significantly elevated levels of ergothioneine were present in aqueous mycelial extracts of the A. fumigatus ΔgliK26933 mutant compared to the wild type (P < 0.001). Determination of the gliotoxin uptake rate revealed a significant difference (P = 0.0045) between that of A. fumigatus ATCC 46645 (9.3 pg/mg mycelium/min) and the ΔgliK46645 mutant (31.4 pg/mg mycelium/min), strongly suggesting that gliK absence and the presence of elevated ergothioneine levels impede exogenously added gliotoxin efflux. Our results confirm a role for gliK in gliotoxin biosynthesis and reveal new insights into gliotoxin functionality in A. fumigatus.  相似文献   
64.
Calcium phosphate (CaP) polymorphs are nontoxic, biocompatible and hold promise in applications ranging from hard tissue regeneration to drug delivery and vaccine design. Yet, simple and robust routes for the synthesis of protein-coated CaP nanoparticles in the sub-100 nm size range remain elusive. Here, we used cell surface display to identify disulfide-constrained CaP binding peptides that, when inserted within the active site loop of Escherichia coli thioredoxin 1 (TrxA), readily and reproducibly drive the production of nanoparticles that are 50-70 nm in hydrodynamic diameter and consist of an approximately 25 nm amorphous calcium phosphate (ACP) core stabilized by the protein shell. Like bone and enamel proteins implicated in biological apatite formation, peptides supporting nanoparticle production were acidic. They also required presentation in a loop for high-affinity ACP binding as elimination of the disulfide bridge caused a nearly 3-fold increase in hydrodynamic diameters. When compared to a commercial aluminum phosphate adjuvant, the small core-shell assemblies led to a 3-fold increase in mice anti-TrxA titers 3 weeks postinjection, suggesting that they might be useful vehicles for adjuvanted antigen delivery to dendritic cells.  相似文献   
65.
Tree encroachment in fire‐maintained woodlands and grasslands is a major management concern, yet little information exists regarding the mechanisms of small tree mortality following prescribed burns. We sought to clarify the relative importance of tree size and fire‐induced injury in the post‐fire mortality of encroaching Douglas‐fir trees and to compare results with an existing mortality model for larger Douglas‐fir trees. Crown injury to small Douglas‐fir trees was a significant explanatory variable in post‐fire mortality models, with results suggesting a 20% threshold in crown scorch. Crown injury was strongly related to bole injury, and delayed mortality was important as we documented new mortality 20 months post‐burn. Mortality models for large Douglas‐fir tend to over‐predict small tree mortality, underscoring the need to better understand the mechanisms of fire‐caused mortality for small, encroaching trees.  相似文献   
66.
Smith A  Rowan R  McCann M  Kavanagh K 《Biometals》2012,25(3):611-616
The Ag(I) ion has well established anti-bacterial and antifungal properties. Exposure of Staphylococcus aureus to MIC(80) AgNO(3) (3 μg/ml) lead to an increase in the activity of superoxide dismutase, glutathione reductase and catalase at 30 min but activity declined by 60 min. In addition, exposure of cells to this metal ion for 1 h lead to increased expression of a number of proteins such as elongation factors Ts, Tu and G, fructose-bisphosphate aldolase and triosephosphate isomerase but their expression declined following 4 h exposure. ATP binding cassette transporter protein and oligoendopeptidase F showed increased expression at 4 h. While Ag(I) is a potent antimicrobial agent this work demonstrates that S. aureus can mount a short-term protective response to exposure to the metal ion but that this is eventually overcome.  相似文献   
67.
68.
69.
The recent discovery that it is possible to directly reprogramme somatic cells to an embryonic stem (ES) cell-like pluripotent state, by retroviral transduction of just four genes (Oct3/4, Sox2, c-Myc and Klf4), represents a major breakthrough in stem cell research. The reprogrammed cells, known as induced pluripotent stem (iPS) cells, possess many of the properties of ES cells, and represent one of the most promising sources of patient-specific cells for use in regenerative medicine. While the ultimate goal is the use of iPS cells in the treatment of human disease, much of the research to date has been carried out with murine cells, and improved mouse iPS cells have been shown to contribute to live chimeric mice that are germ-line competent. Very recently, it has been reported that iPS cells can be generated by three factors without c-Myc, and these cells give rise to chimeric mice with a reduced risk of tumour development.  相似文献   
70.
Uncoupling protein 2 (UCP2) regulates glucose-stimulated insulin secretion in pancreatic beta-cells. UCP2 content, measured by calibrated immunoblot in INS-1E insulinoma cells (a pancreatic beta-cell model) grown in RPMI medium, and INS-1E mitochondria, was 2.0 ng/million cells (7.9 ng/mg mitochondrial protein). UCP2 content was lower in cells incubated without glutamine and higher in cells incubated with 20 mM glucose, and varied from 1.0-4.4 ng/million cells (2.7-14.5 ng/mg mitochondrial protein). This dynamic response to nutrients was achieved by varied expression rates against a background of a very short UCP2 protein half-life of about 1 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号