首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   7篇
  国内免费   2篇
  2022年   1篇
  2019年   2篇
  2017年   2篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   2篇
  2008年   11篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   15篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   8篇
  1999年   9篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1934年   1篇
  1929年   1篇
排序方式: 共有148条查询结果,搜索用时 0 毫秒
41.
42.
Abstract

The three-dimensional structures of the complexes between human erythrocytic purine nucleoside phosphorylase (PNP) and both 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (ribavirin) and 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamidine (TCNR) have been determined using X-ray crystallographic techniques. The structures have been refined at 2.9 Å resolution using simulated annealing and conjugate-gradient minimization techniques to an R value of 21.8% for ribavirin and 20.8% for TCNR. Ribavirin and TCNR are truncated nucleosides corresponding to adenosine and inosine, respectively, and are of potential interest as PNP inhibitors. Kinetic parameters have been determined for recombinant wild-type PNP and for a mutant PNP in which Asn 243 is converted to Asp. The Ki value for ribavirin is 4.9 mM with wild-type PNP and 4.7 mM with the Asn243Asp mutant, while the Ki values for TCNR are 17.6 μM and 3.8 μM with wild-type and mutant, respectively. X-ray crystallographic studies showed that the binding geometry for both of these substrate analogues was similar to that seen for natural substrates. The glycosidic torsion angles (χ) were ?34° for ribavirin and ?39° for TCNR which are in good agreement with values seen for other studied nucleoside complexes with PNP, but which are unusual when compared to those seen for free nucleic acid derivatives. Based upon the three-dimensional structure, interactions of Asn 243 and Glu 201 with a protonated carboxamidine of TCNR explain the stronger inhibition of PNP observed for TCNR over ribavirin.  相似文献   
43.
Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 ? resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an α/β monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is ~7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.  相似文献   
44.
45.
The function of the mlr6791 gene from Mesorhizobium loti MAFF303099 has been identified. This gene encodes 3-hydroxy-2-methylpyridine-4,5-dicarboxylate decarboxylase (HMPDdc), an enzyme involved in the catabolism of pyridoxal 5'-phosphate (Vitamin B6). This enzyme was overexpressed in Escherichia coli and characterized. HMPDdc is a 26 kDa protein that catalyzes the decarboxylation of 3-hydroxy-2-methylpyridine-4,5-dicarboxylate to 3-hydroxy-2-methylpyridine-5-carboxylate. The KM and kcat were found to be 366 microM and 0.6 s-1, respectively. The structure of this enzyme was determined at 1.9 A resolution using SAD phasing and belongs to the class II aldolase/adducin superfamily. While the decarboxylation of hydroxy-substituted benzene rings is a common motif in biosynthesis, the mechanism of this reaction is still poorly characterized. The structural studies described here suggest that catalysis of such decarboxylations proceeds by an aldolase-like mechanism.  相似文献   
46.
Kang YN  Tran A  White RH  Ealick SE 《Biochemistry》2007,46(17):5050-5062
Inosine 5'-monophosphate (IMP) cyclohydrolase catalyzes the cyclization of 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) to IMP in the final step of de novo purine biosynthesis. Two major types of this enzyme have been discovered to date: PurH in Bacteria and Eukarya and PurO in Archaea. The structure of the MTH1020 gene product from Methanothermobacter thermoautotrophicus was previously solved without functional annotation but shows high amino acid sequence similarity to other PurOs. We determined the crystal structure of the MTH1020 gene product in complex with either IMP or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) at 2.0 and 2.6 A resolution, respectively. On the basis of the sequence analysis, ligand-bound structures, and biochemical data, MTH1020 is confirmed as an archaeal IMP cyclohydrolase, thus designated as MthPurO. MthPurO has a four-layered alphabeta betaalpha core structure, showing an N-terminal nucleophile (NTN) hydrolase fold. The active site is located at the deep pocket between two central beta-sheets and contains residues strictly conserved within PurOs. Comparisons of the two types of IMP cyclohydrolase, PurO and PurH, revealed that there are no similarities in sequence, structure, or the active site architecture, suggesting that they are evolutionarily not related to each other. The MjR31K mutant of PurO from Methanocaldococcus jannaschii showed 76% decreased activity and the MjE102Q mutation completely abolished enzymatic activity, suggesting that these highly conserved residues play critical roles in catalysis. Interestingly, green fluorescent protein (GFP), which has no structural homology to either PurO or PurH but catalyzes a similar intramolecular cyclohydrolase reaction required for chromophore maturation, utilizes Arg96 and Glu222 in a mechanism analogous to that of PurO.  相似文献   
47.
Structural studies, sequence alignments, and biochemistry have provided new insights into the evolution of the purine biosynthetic pathway. The importance of chemistry, the binding of ribose 5-phosphate (common to all purine biosynthetic intermediates), and transient protein-protein interactions in channeling of chemically unstable intermediates have all been examined in the past few years.  相似文献   
48.
Zhang Y  White RH  Ealick SE 《Biochemistry》2008,47(1):205-217
Purine biosynthesis requires 10 enzymatic steps in higher organisms, while prokaryotes require an additional enzyme for step 6. In most organisms steps 9 and 10 are catalyzed by the purH gene product, a bifunctional enzyme with both 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) synthase and inosine monophosphate (IMP) cyclohydrolase activity. Recently it was discovered that Archaea utilize different enzymes to catalyze steps 9 and 10. An ATP-dependent FAICAR synthetase is encoded by the purP gene, and IMP cyclohydrolase is encoded by the purO gene. We have determined the X-ray crystal structures of FAICAR synthetase from Methanocaldococcus jannaschii complexed with various ligands, including the tertiary substrate complex and product complex. The enzyme belongs to the ATP grasp superfamily and is predicted to use a formyl phosphate intermediate formed by an ATP-dependent phosphorylation. In addition, we have determined the structures of a PurP orthologue from Pyrococcus furiosus, which is functionally unclassified, in three crystal forms. With approximately 50% sequence identity, P. furiosus PurP is structurally homologous to M. jannaschii PurP. A phylogenetic analysis was performed to explore the possible role of this functionally unclassified PurP.  相似文献   
49.
50.
The predominantly Holarctic bee genus Osmia Panzer is species‐rich and behaviourally diverse. A robust phylogeny of this genus is important for understanding the evolution of the immense variety of morphological and behavioural traits exhibited by this group. We infer a phylogeny of Osmia using DNA sequence data obtained from three nuclear genes (elongation factor 1‐α, LWrhodopsin and CAD) and the mitochondrial gene COI. Our taxon sampling places special attention on North American members of the subgenus Melanosmia Schmiedeknecht; we discuss the novel placement of a number of species traditionally assigned to O. (Melanosmia) and examine the relative support for alternative classifications of this species‐rich subgenus. We use this new phylogeny to guide a reassessment of morphological and behavioural characters within Osmia. Our results provide support for the recognition of Osmia (Hapsidosmia), subgen.n ., a monotypic subgenus containing Osmia iridis Cockerell & Titus. We synonymize Osmia (Mystacosmia) Snelling under O. (Melanosmia), syn.n . We synonymize Osmia (Acanthosmioides) Ashmead under O. (Melanosmia), syn.n ., propose ‘odontogaster species group’ as a replacement for the subgeneric name Acanthosmioides, and refine the morphological characters that serve to diagnose the species group. We additionally propose ‘nigrifrons species group’ for a clade within O. (Melanosmia) containing most species formerly placed in Osmia (Centrosmia) Robertson. We demonstrate more cohesive patterns of nest substrate use in the nigrifrons and odontogaster species groups than was previously believed to occur, reconsider character polarity of aspects of the female mandible, and show that a large number of morphological characters have evolved convergently within the genus. In order to facilitate discussion of relevant taxa, we propose the following 15 new synonymies: O. bakeri Sandhouse under O. melanopleura Cockerell; O. crenulaticornis Michener under O. pinorum Cockerell; O. claremontensis Michener under O. sedula Sandhouse; O. cockerelli Sandhouse under O. dakotensis Michener; O. francisconis White under O. enixa Sandhouse; O. hurdi White under O. austromaritima Michener; O. sladeni Sandhouse under O. nifoata Cockerell; O. titusi Cockerell under O. phenax Cockerell; O. subtrevoris Cockerell, O. physariae Cockerell, and O. erecta Michener under O. giliarum Cockerell; and O. universitatis Cockerell, O. integrella Cockerell, O. amala Cockerell, and O. metitia Cockerell under O. nigrifrons Cresson, syn.n . We remove O. wyomingensis Michener from synonymy with O. nifoata Cockerell, stat.n ., and O. pinorum Cockerell from synonymy with O. physariae Cockerell, stat.n . This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:A3E7D63B‐5C4C‐4ACF‐BF33‐48E5C5DD1B0D .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号