首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   5篇
  54篇
  2021年   1篇
  2015年   2篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
  1966年   1篇
  1958年   1篇
  1955年   1篇
  1950年   1篇
排序方式: 共有54条查询结果,搜索用时 0 毫秒
31.
Nuclear reprogramming resets differentiated tissue to generate induced pluripotent stem (iPS) cells. While genomic attributes underlying reacquisition of the embryonic-like state have been delineated, less is known regarding the metabolic dynamics underscoring induction of pluripotency. Metabolomic profiling of fibroblasts vs. iPS cells demonstrated nuclear reprogramming-associated induction of glycolysis, realized through augmented utilization of glucose and accumulation of lactate. Real-time assessment unmasked downregulated mitochondrial reserve capacity and ATP turnover correlating with pluripotent induction. Reduction in oxygen consumption and acceleration of extracellular acidification rates represent high-throughput markers of the transition from oxidative to glycolytic metabolism, characterizing stemness acquisition. The bioenergetic transition was supported by proteome remodeling, whereby 441 proteins were altered between fibroblasts and derived iPS cells. Systems analysis revealed overrepresented canonical pathways and interactome-associated biological processes predicting differential metabolic behavior in response to reprogramming stimuli, including upregulation of glycolysis, purine, arginine, proline, ribonucleoside and ribonucleotide metabolism, and biopolymer and macromolecular catabolism, with concomitant downregulation of oxidative phosphorylation, phosphate metabolism regulation, and precursor biosynthesis processes, prioritizing the impact of energy metabolism within the hierarchy of nuclear reprogramming. Thus, metabolome and metaboproteome remodeling is integral for induction of pluripotency, expanding on the genetic and epigenetic requirements for cell fate manipulation.  相似文献   
32.
The long (4.6-kb) A+T region of Drosophila melanogaster mitochondrial DNA has been cloned and sequenced. The A+T region is organized in two large arrays of tandemly repeated DNA sequence elements, with nonrepetitive intervening and flanking sequences comprising only 22% of its length. The first repeat array consists of five repeats of 338-373 bp. The second consists of four intact 464-bp repeats and a fifth partial repeat of 137 bp. Three DNA sequence elements are found to be highly conserved in D. melanogaster and in several Drosophila species with short A+T regions. These include a 300-bp DNA sequence element that overlaps the DNA replication origin and two thymidylate stretches identified on opposite DNA strands. We conclude that the length heterogeneity observed in the A+T regulatory region in mitochondrial DNAs from the genus Drosophila results from the expansion (and contraction) of the number of repeated DNA sequence elements. We also propose that the 300-bp conserved DNA sequence element, in conjunction with another primary sequence determinant, perhaps the adjacent thymidylate stretch, functions in the regulation of mitochondrial DNA replication.   相似文献   
33.
34.
Six naturally occurring alleles representing four electromorphs of the enzyme glucose-6-phosphate dehydrogenase were transferred by P1- mediated transduction from natural isolates of Escherichia coli into the genetic background of E. coli K12 and were studied in pairwise competition in chemostats limited for glucose in order to estimate differences in growth rate associated with the alleles. Although the level of resolution of such experiments is a growth rate differential of approximately 0.002 h-1, no significant differences among the strains were found. Studies of apparent Km and Vmax in crude enzyme extracts of the strains also failed to reveal any significant differences among the electromorphs. These results support the view that the alleles are selectively neutral or nearly neutral under these conditions.   相似文献   
35.
36.
Chromosomal DNA from 23 closely related, pathogenic strains of Escherichia coli was digested and probed for the insertion sequences IS1, IS2, IS4, IS5, and IS30. Under the assumption that elements residing in DNA restriction fragments of the same apparent length are identical by descent, parsimony analysis of these characters yielded a unique phylogenetic tree. This analysis not only distinguished among bacterial strains that were otherwise identical in their biochemical characteristics and enzyme electrophoretic mobilities, but certain aspects of the topology of the tree were consistent across several unrelated insertion elements. The distribution of IS elements was then reexamined in light of the inferred phylogenetic relationships to investigate the biological properties of the elements, such as rates of insertion and deletion, and to discover apparent recombinational events. The analysis shows that the pattern of distribution of insertion elements in the bacterial genome is sufficiently stable for epidemiological studies. Although the rate of recombination by conjugation has been postulated to be low, at least two such events appear to have taken place.   相似文献   
37.
Regulation of mRNA stability and translation plays a critical role in determining protein abundance within cells. Processing bodies (P‐bodies) are critical regulators of these processes. Here, we report that the Pim1 and 3 protein kinases bind to the P‐body protein enhancer of mRNA decapping 3 (EDC3) and phosphorylate EDC3 on serine (S)161, thereby modifying P‐body assembly. EDC3 phosphorylation is highly elevated in many tumor types, is reduced upon treatment of cells with kinase inhibitors, and blocks the localization of EDC3 to P‐bodies. Prostate cancer cells harboring an EDC3 S161A mutation show markedly decreased growth, migration, and invasion in tissue culture and in xenograft models. Consistent with these phenotypic changes, the expression of integrin β1 and α6 mRNA and protein is reduced in these mutated cells. These results demonstrate that EDC3 phosphorylation regulates multiple cancer‐relevant functions and suggest that modulation of P‐body activity may represent a new paradigm for cancer treatment.  相似文献   
38.
The sequence of phosphoenolpyruvate carboxykinase (PEPCK) has been previously identified as a promising candidate for reconstructing Mesozoic-age divergences (Friedlander, Regier, and Mitter 1992, 1994). To test this hypothesis more rigorously, 597 nucleotides of aligned PEPCK coding sequence (approximately 30% of the coding region) were generated from 18 species representing Mesozoic-age lineages of moths (Insecta: Lepidoptera) and outgroup taxa. Relationships among basal Lepidoptera are well established by morphological analysis, providing a strong test for the utility of a gene which has not previously been used in systematics. Parsimony and other phylogenetic analyses were conducted on nucleotides by codon positions (nt1, nt2, nt3) separately and in combination, and on amino acids, for comparison to the test phylogeny. The highest concordance was achieved with nt1 + nt2, for which one of two most-parsimonious trees was identical to the test phylogeny, and with all nucleotides when nt3 was down-weighted sevenfold or higher, for which a single most-parsimonious tree identical to the test phylogeny resulted. Substitutions in nt3 approached saturation in many, but not all, pairwise comparisons and their exclusion or severe downweighting greatly increased the degree of concordance with the test phylogeny. Neighbor-joining analysis confirms this finding. The utility of PEPCK for phylogenetics is demonstrated over a time span for which few other suitable genes are currently available.   相似文献   
39.
p27kip1 has been implicated in cell cycle regulation, functioning as an inhibitor of cyclin-dependent kinase activity. In addition, p27 was also shown to affect cell migration, with accumulation of cytoplasmic p27 associated with tumor invasiveness. However, the mechanism underlying p27 regulation as a cytoplasmic protein is poorly understood. Here we show that glucose starvation induces proteasome-dependent degradation of cytoplasmic p27, accompanied by a decrease in cell motility. We also show that the glucose limitation-induced p27 degradation is regulated through an ubiquitin E3 ligase complex involving Siah1 and SIP/CacyBP. SIP−/− embryonic fibroblasts have increased levels of cytosolic p27 and exhibit increased cell motility compared with wild-type cells. These observations suggest that the Siah1/SIP E3 ligase complex regulates cell motility through degradation of p27.Key words: p27kip1, Siah1, SIP, glucose starvation, cell migration  相似文献   
40.
The impact of gender and/or hormone variations on a wide variety of neural functions makes the choice between studying males or females (or both) of a given species difficult. Although female rats are widely used experimentally, few studies control for the stage of estrus. More detailed information about how to distinguish the various stages of the estrous cycle is needed. For the present study, vaginal smears were obtained once a day and stained using an adaptation of the Papanicolaou (PAP) procedure. Images are provided of unstained “wet” samples and the corresponding PAP stained smears illustrating the cellular profile for each stage of the cycle as well as post-ovariectomy. The different cell populations across the cycle were quantified and ratios determined to show trends between the predominant and other cell types in each stage of the estrous cycle. Both stained and unstained images and cell quantification data provide valuable guidelines for distinguishing the stages of the estrous cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号