首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24975篇
  免费   15497篇
  国内免费   2篇
  40474篇
  2023年   12篇
  2022年   85篇
  2021年   387篇
  2020年   2182篇
  2019年   3712篇
  2018年   3813篇
  2017年   4091篇
  2016年   4073篇
  2015年   3976篇
  2014年   3611篇
  2013年   4029篇
  2012年   1692篇
  2011年   1413篇
  2010年   2991篇
  2009年   1753篇
  2008年   624篇
  2007年   222篇
  2006年   215篇
  2005年   265篇
  2004年   245篇
  2003年   235篇
  2002年   231篇
  2001年   244篇
  2000年   181篇
  1999年   127篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1974年   1篇
  1970年   1篇
  1958年   1篇
  1953年   1篇
  1889年   1篇
  1882年   1篇
  1881年   1篇
  1873年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter‐ and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified “indicator” compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.  相似文献   
112.
Genome‐scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance and turnover number. We applied GECKO to a Saccharomyces cerevisiae GEM and demonstrated that the new model could correctly describe phenotypes that the previous model could not, particularly under high enzymatic pressure conditions, such as yeast growing on different carbon sources in excess, coping with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between and within metabolic pathways. The developed method and model are expected to increase the use of model‐based design in metabolic engineering.  相似文献   
113.
Land use changes have profound effects on populations of Neotropical primates, and ongoing climate change is expected to aggravate this scenario. The titi monkeys from eastern Brazil (Callicebus personatus group) have been particularly affected by this process, with four of the five species now allocated to threatened conservation status categories. Here, we estimate the changes in the distribution of these titi monkeys caused by changes in both climate and land use. We also use demographic‐based, functional landscape metrics to assess the magnitude of the change in landscape conditions for the distribution predicted for each species. We built species distribution models (SDMs) based on maximum entropy for current and future conditions (2070), allowing for different global circulation models and contrasting scenarios of glasshouse gas concentrations. We refined the SDMs using a high‐resolution map of habitat remnants. We then calculated habitat availability and connectivity based on home‐range size and the dispersal limitations of the individual, in the context of a predicted loss of 10% of forest cover in the future. The landscape configuration is predicted to be degraded for all species, regardless of the climatic settings. This include reductions in the total cover of forest remnants, patch size and functional connectivity. As the landscape configuration should deteriorate severely in the future for all species, the prevention of further loss of populations will only be achieved through habitat restoration and reconnection to counteract the negative effects for these and several other co‐occurring species.  相似文献   
114.
115.
The quality of MALDI‐TOF mass spectrometric analysis is highly dependent on the matrix and its deposition strategy. Although different matrix‐deposition methods have specific advantages, one major problem in the field of proteomics, particularly with respect to quantitation, is reproducibility between users or laboratories. Compounding this is the varying crystal homogeneity of matrices depending on the deposition strategy used. Here, we describe a novel optimised matrix‐deposition strategy for LC‐MALDI‐TOF/TOF MS using an automated instrument that produces a nebulised matrix “mist” under controlled atmospheric conditions. Comparisons of this with previously reported strategies showed the method to be advantageous for the atypical matrix, 2,5‐DHB, and improved phosphopeptide ionisation when compared with deposition strategies for CHCA. This optimised DHB matrix‐deposition strategy with LC‐MALDI‐TOF/TOF MS, termed EZYprep LC, was subsequently optimised for phosphoproteome analysis and compared to LC‐ESI‐IT‐MS and a previously reported approach for phosphotyrosine identification and characterisation. These methods were used to map phosphorylation on epidermal growth factor‐stimulated epidermal growth factor receptor to gauge the sensitivity of the proposed method. EZYprep DHB LC‐MALDI‐TOF/TOF MS was able to identify more phosphopeptides and characterise more phosphorylation sites than the other two proteomic strategies, thus proving to be a sensitive approach for phosphoproteome analysis.  相似文献   
116.
The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well‐watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non‐stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species‐specific and dependent on the type of competition. Thus, the response to elevated CO2 in well‐watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species‐level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions.  相似文献   
117.
118.
Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co‐occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.  相似文献   
119.
One of the major challenges in ecology is to understand how ecosystems respond to changes in environmental conditions, and how taxonomic and functional diversity mediate these changes. In this study, we use a trait‐spectra and individual‐based model, to analyse variation in forest primary productivity along a 3.3 km elevation gradient in the Amazon‐Andes. The model accurately predicted the magnitude and trends in forest productivity with elevation, with solar radiation and plant functional traits (leaf dry mass per area, leaf nitrogen and phosphorus concentration, and wood density) collectively accounting for productivity variation. Remarkably, explicit representation of temperature variation with elevation was not required to achieve accurate predictions of forest productivity, as trait variation driven by species turnover appears to capture the effect of temperature. Our semi‐mechanistic model suggests that spatial variation in traits can potentially be used to estimate spatial variation in productivity at the landscape scale.  相似文献   
120.
Invasive species are an important issue worldwide but predicting invasiveness, and the underlying mechanisms that cause it, is difficult. There are several primary hypotheses to explain invasion success. Two main hypothesis based on niche spaces stand out as alternative, although not exclusive. The empty niche hypothesis states that invaders occupy a vacant niche space in the recipient community, and the niche competition hypothesis states that invaders overlap with native species in niche space. Studies on trait similarity/dissimilarity between the invader and native species can provide information on their niche overlap. Here, we use the highly invasive and well‐studied cane toad (Rhinella marina) to test these two hypotheses in Australia, and assess its degree of overlap with native species in several niche dimensions. We compare extensive morphological and environmental data of this successful invader to 235 species (97%) of native Australian frogs. Our study is the first to document the significant morphological differences between the invasive cane toad and a continent‐wide frog radiation: despite significant environmental overlap, cane toads were distinct in body size and shape from most Australian frog species, suggesting that in addition to their previously documented phenotypic plasticity and wide environmental and trophic niche breadth, their unique shape also may have contributed to their success as an invasive species in Australia. Thus, the invasive success of cane toads in Australia may be explained through them successfully colonizing an empty niche among Australian anurans. Our results support that the cane toad's distinct morphology may have played a unique role in the invasiveness of this species in Australia, which coupled with a broad environmental niche breadth, would have boosted their ability to expand their distribution across Australia. We also propose RLLR (Relative limb length ratio) as a potentially useful measure of identifying morphological niche uniqueness and a potential measure of invasiveness potential in anuran amphibians.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号