首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   4篇
  394篇
  2017年   2篇
  2014年   7篇
  2013年   7篇
  2012年   13篇
  2011年   21篇
  2010年   29篇
  2009年   36篇
  2008年   43篇
  2007年   43篇
  2006年   26篇
  2005年   16篇
  2004年   11篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   14篇
  1997年   9篇
  1996年   6篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1987年   3篇
  1985年   4篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   8篇
  1971年   4篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1959年   1篇
  1958年   1篇
  1954年   1篇
  1951年   1篇
  1950年   3篇
  1949年   2篇
  1948年   1篇
  1946年   1篇
  1941年   1篇
  1938年   1篇
  1929年   1篇
排序方式: 共有394条查询结果,搜索用时 0 毫秒
31.
32.
Tropical forests are an important source of atmospheric methane (CH4), and recent work suggests that CH4 fluxes from humid tropical environments are driven by variations in CH4 production, rather than by bacterial CH4 oxidation. Competition for acetate between methanogenic archaea and Fe(III)‐reducing bacteria is one of the principal controls on CH4 flux in many Fe‐rich anoxic environments. Upland humid tropical forests are also abundant in Fe and are characterized by high organic matter inputs, steep soil oxygen (O2) gradients, and fluctuating redox conditions, yielding concomitant methanogenesis and bacterial Fe(III) reduction. However, whether Fe(III)‐reducing bacteria coexist with methanogens or competitively suppress methanogenic acetate use in wet tropical soils is uncertain. To address this question, we conducted a process‐based laboratory experiment to determine if competition for acetate between methanogens and Fe(III)‐reducing bacteria influenced CH4 production and C isotope composition in humid tropical forest soils. We collected soils from a poor to moderately drained upland rain forest and incubated them with combinations of 13C‐bicarbonate, 13C‐methyl labeled acetate (13CH3COO?), poorly crystalline Fe(III), or fluoroacetate. CH4 production showed a greater proportional increase than Fe2+ production after competition for acetate was alleviated, suggesting that Fe(III)‐reducing bacteria were suppressing methanogenesis. Methanogenesis increased by approximately 67 times while Fe2+ production only doubled after the addition of 13CH3COO?. Large increases in both CH4 and Fe2+ production also indicate that the two process were acetate limited, suggesting that acetate may be a key substrate for anoxic carbon (C) metabolism in humid tropical forest soils. C isotope analysis suggests that competition for acetate was not the only factor driving CH4 production, as 13C partitioning did not vary significantly between 13CH3COO? and 13CH3COO?+Fe(III) treatments. This suggests that dissimilatory Fe(III)‐reduction suppressed both hydrogenotrophic and aceticlastic methanogenesis. These findings have implications for understanding the CH4 biogeochemistry of highly weathered wet tropical soils, where CH4 efflux is driven largely by CH4 production.  相似文献   
33.
To investigate feeding‐related decisions in Aedes aegypti (L.), adults are presented with simple diets of paired gustatory stimuli conveying information concerning energy content, nutrient richness, osmotic balance and food toxicity in a two‐diet matrix assay. Assessment of mosquito gut contents indicates that both sexes accept single sugar diets in a dose‐dependent manner. When presented with a choice between two different yet equimolar sugar solutions, more individuals of both sexes accept the disaccharides, sucrose and trehalose, than the monosacharrides, fructose and glucose. The combination of pyranose and furanose sugars in solution, either physically associated (as in sucrose) or present as monomers (as glucose and fructose), is accepted over solutions containing a single sugar moiety. Using the two‐diet matrix assay, mosquito diet‐choice is also tested between two equimolar sucrose ‘driver’ solutions in which one is presented with various concentrations of another potential feeding cue ‘test’ compound (i.e. each of the 20 naturally‐occurring amino acids, sodium chloride, quinine or caffeine). Diet‐choice between the ‘driver’ sucrose‐only solution and the solution of the ‘driver’ sucrose containing a ‘test’ amino acid is influenced by sex, amino acid concentration and sucrose concentration. There is also an example of synergism between the diet components, leucine and sucrose. Mosquitoes demonstrate a dose‐dependent acceptance of sucrose‐only diets over sodium chloride‐containing sucrose when presented together. Interestingly, the sucrose‐only diet is accepted by more mosquitoes than all concentrations of the saline‐containing sucrose diets except those approximately isotonic to mosquito haemolymph, at which concentration mosquitoes show no clear choice between the diets. More individuals of both sexes accept sucrose‐only diets than the diets of caffeine‐containing sucrose in a dose‐dependent manner. Only females, however, respond to quinine‐containing sucrose diets and modulate this behaviour in relation to the energetic reward: more females imbibed quinine‐containing sucrose at the higher sucrose concentration (1 m ). A systematic characterization of diet selection behaviour of A. aegypti is presented for 27 putative feeding cues potentially involved in nectar/honeydew feeding. This study will be used as a basis from which to investigate further the mosquito's assessment of food quality and ultimately host choice.  相似文献   
34.
The pattern of feeding of Eastern spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera, Tortricidae) is compared on foliage from white spruce Picea glauca (Moench) Voss. (Pinaceae) trees previously determined to be susceptible and resistant to defoliation by budworm. No differences are observed in electrophysiological responses from taste sensilla to aqueous extracts of the two foliage types, nor is there a preference for either extract type in a choice test. Acetone extracts from the two foliage types are both preferred to a control sucrose solution, although neither elicits a preference relative to the other. These results suggest that there is no difference in phagostimulatory power of internal leaf contents of the two foliage types. Longer‐term observation of feeding behaviour in a no‐choice situation shows no difference in meal duration, confirming the lack of difference in phagostimulatory power. However, on average, intermeal intervals are twice as long on the resistant foliage, leading to an overall lower food consumption during the assay. This result suggests an anti‐digestive or toxic effect of the resistant foliage that slows behaviour and limits food intake. Previous research has shown that waxes of the resistant foliage deter initiation of feeding by the spruce budworm and that this foliage contains higher levels of tannins and monoterpenes. The data suggest that the resistant foliage contains a post‐ingestive second line of defence against the spruce budworm.  相似文献   
35.
Abstract.  Water deprivation tolerance is investigated in the last larval stadium of Libellula depressa under various conditions of relative humidity (60–100% relative humidity; RH). Most of the larvae maintained at 100% RH emerge and, at lower RH levels show some resistance to dehydration because they die after a mean period ranging from 1.4 days at 60% RH up to 6.7 days at 90% RH. In dual-choice chambers with humidity gradients from 63–74% RH and from 68–84% RH, larvae spend most of the time in the moist side of the chamber. In a Y-tube olfactometer, the larvae reveal a positive hygrotaxis to two airstreams carrying different amounts of water vapour (98% vs. 50%) and spend most of their time in the 'humid' arm. The ecological significance of desiccation tolerance and hygropositive response in the last larval stadium of L. depressa is discussed in relation to the presence of hygroreceptors in dragonfly larvae.  相似文献   
36.
Climate change poses an immediate threat to the persistence and distribution of many species, yet our ability to forecast changes in species composition is hindered by poor understanding of the extent to which higher trophic‐level interactions may buffer or exacerbate the adverse effects of warming. We incorporated species‐specific consumption data from 240 wolf‐killed elk carcasses from Yellowstone National Park into stochastic simulation models to link trends in the El Niño Southern Oscillation (ENSO) to food procurement by a guild of scavengers as a function of gray wolf reintroduction. We find that a shift in ENSO towards the El Niño (warming) phase of the cycle coincident with increasing global temperatures reduces carrion for scavengers, particularly those with strong seasonal patterns in resource use such as grizzly bears. Wolves alleviate these warming‐induced food shortages by rendering control over this crucial resource to biotic rather than abiotic factors. Ecosystems with intact top predators are likely to exhibit stronger biotic regulation and should be more resistant to climate change than ecosystems lacking them.  相似文献   
37.
Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem‐scale substrate supply. For a simple membrane‐bound enzymatic system that follows Michaelis–Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half‐saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation.  相似文献   
38.
1. We combined ecological surveys, life table studies, microscopy and molecular sequencing to determine the development, ecology, pathology and phylogeny of Polycaryum laeve, an endoparasite of cladocerans. We report the first records of P. laeve from North America, where we have used a polymerase chain reaction primer and microscopic examination to confirm infections in 14 lakes. Infections are highly pathogenic and caused increased mortality, reduced growth, and reproductive castration in Daphnia pulicaria during life table studies. 2. Biweekly data from Allequash Lake (Wisconsin, U.S.A.) throughout 2003 indicated that fecundity and infection prevalence were inversely correlated. Infection prevalence was highest in late winter and early spring (up to 80%) and lowest during late summer. Epidemics were generally followed by sharp declines in host population density (up to 99%). 3. Within the haemocoel of its host, P. laeve forms thick‐walled sporangia, which occur systemically in later stages of infection. Fungal thalli associate closely with muscle fibres and connective tissue, leading to degeneration as the infection becomes advanced. Following death of the host, flagellated zoospores are released through an exit papilla on the sporangium. Based on the infection‐induced castration of the host and increases in infection prevalence with Daphnia size, we postulate that transmission is horizontal, but may be indirect through an additional host or free‐living stage. 4. Molecular and morphological data clearly indicate that P. laeve belongs in the fungal phylum Chytriodiomycota, order Blastocladiales. Based on ribosomal RNA gene sequences and morphological features, we transfer the genus Polycaryum from the Haplosporidia to the Chytridiomycota, and designate a lectotype and epitype for P. laeve. Considering the high prevalence of P. laeve infection within Daphnia populations, the frequency with which we detected infections among lakes, and the keystone importance of large‐bodied Daphnia in aquatic food webs, we suggest that P. laeve may exert a regulatory influence on Daphnia populations in lake ecosystems.  相似文献   
39.
Identification of fern gametophytes is generally hampered by low morphological complexity. Here we explore an alternative: DNA‐based identification. We obtained a plastid rbcL sequence from a sterile gametophyte of unknown origin (cultivated for more than 30 years) and employed blast to determine its affinities. Using this approach, we identified the gametophyte as Osmunda regalis. To evaluate the robustness of this determination, and the usefulness of rbcL in differentiating among species, we conducted a phylogenetic analysis of osmundaceous fern sequences. Based on our results, it is evident that DNA‐based identification has considerable potential in exploring the ecology of fern gametophytes.  相似文献   
40.
1. The functioning of many aquatic ecosystems is controlled by surrounding terrestrial ecosystems. In a view of growing interest in linking biodiversity to ecosystem‐level processes, we examined whether and how leaf diversity influences litter decomposition and consumers in streams. 2. We tested experimentally the hypothesis that the effects of leaf diversity on decomposition are determined by the responses of leaf consumers to resource–habitat heterogeneity. Leaves from three common riparian trees, beech (Fagus sylvatica), hazel (Corylus avellana) and ash (Fraxinus excelsior), were exposed alone and in all possible mixtures of two and three species in a stream. We analysed individual leaf species for decomposition rate, microbial respiration and mycelial biomass, and we determined the species composition, abundance and biomass of shredders in leaf bags. 3. We found that the decomposition of the fastest decomposing leaves (hazel and ash) was substantially stimulated (up to twofold higher than single species leaf packs) in mixtures containing beech leaves, which are refractory. In contrast, the decomposition of beech leaves was not affected by leaf mixing. Such species‐specific behaviour of leaves in species mixtures has been overlooked in previous studies that examined the overall decomposition of litter mixtures. 4. The effects of leaf diversity on decomposition varied with the abundance and biomass of shredders but not with microbial parameters. Beech leaves alone were less attractive to shredders than leaf packs made of hazel, ash or any mixture of species. Moreover, the presence of beech leaves in mixtures led to higher shredder abundance and biomass than we had expected from data from single species exposed alone. Lastly, we found that early instars of the caddisfly Potamophylax (the dominant shredder in terms of biomass) almost exclusively used the toughest material (i.e. beech leaves) to construct their cases. 5. Leaf pack heterogeneity may have altered shredder‐mediated decomposition. Shredders colonising diverse leaf packs benefited from the stable substratum provided by beech leaves, whereas ash and hazel leaves were primarily used as food. Thus, our findings provide strong evidence for an intimate linkage between the diversity of riparian vegetation and aquatic communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号