首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   4篇
  399篇
  2017年   2篇
  2014年   7篇
  2013年   7篇
  2012年   13篇
  2011年   21篇
  2010年   29篇
  2009年   36篇
  2008年   42篇
  2007年   42篇
  2006年   26篇
  2005年   16篇
  2004年   11篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   14篇
  1997年   11篇
  1996年   6篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   8篇
  1990年   7篇
  1989年   5篇
  1987年   4篇
  1985年   4篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   8篇
  1971年   4篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1959年   1篇
  1958年   1篇
  1954年   1篇
  1951年   1篇
  1950年   3篇
  1949年   2篇
  1948年   1篇
  1946年   1篇
  1941年   1篇
  1938年   1篇
  1929年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
111.
Primers for 10 polymorphic microsatellite loci were developed and characterized for the endangered oyster mussel Epioblasma capsaeformis from the Clinch River, Tennessee. Microsatellite loci also were tested in four other populations or species. Amplification was successful for most loci in these closely related endangered species or populations; therefore, a high level of flanking sequence similarity was inferred for this group of species and populations. Allelic diversity ranged from nine to 20 alleles/locus, and averaged 13.6/locus. This study demonstrated the feasibility of using polymerase chain reaction (PCR) primers to amplify microsatellite loci across freshwater mussel species to conduct population genetics studies.  相似文献   
112.
Models of photosynthesis, respiration, and export predict that foliar labile carbon (C) should increase with elevated CO2 but decrease with elevated temperature. Sugars, starch, and protein can be compared between treatments, but these compounds make up only a fraction of the total labile pool. Moreover, it is difficult to assess the turnover of labile carbon between years for evergreen foliage. Here, we combined changes in foliar Carea (C concentration on an areal basis) as needles aged with changes in foliar isotopic composition (δ13C) caused by inputs of 13C‐depleted CO2 to estimate labile and structural C in needles of different ages in a four‐year, closed‐chamber mesocosm experiment in which Douglas‐fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were exposed to elevated temperature (ambient + 3.5 °C) and CO2 (ambient + 179 ppm). Declines in δ 13C of needle cohorts as they aged indicated incorporation of newly fixed labile or structural carbon. The δ 13C calculations showed that new C was 41 ± 2% and 28 ± 3% of total needle carbon in second‐ and third‐year needles, respectively, with higher proportions of new C in elevated than ambient CO2 chambers (e.g. 42 ± 2% vs. 37 ± 6%, respectively, for second‐year needles). Relative to ambient CO2, elevated CO2 increased labile C in both first‐ and second‐year needles. Relative to ambient temperature, elevated temperature diminished labile C in second‐year needles but not in first‐year needles, perhaps because of differences in sink strength between the two needle age classes. We hypothesize that plant‐soil feedbacks on nitrogen supply contributed to higher photosynthetic rates under elevated temperatures that partly compensated for higher turnover rates of labile C. Strong positive correlations between labile C and sugar concentrations suggested that labile C was primarily determined by carbohydrates. Labile C was negatively correlated with concentrations of cellulose and protein. Elevated temperature increased foliar %C, possibly due to a shift of labile constituents from low %C carbohydrates to relatively high %C protein. Decreased sugar concentrations and increased nitrogen concentrations with elevated temperature were consistent with this explanation. Because foliar constituents that vary in isotopic signature also vary in concentrations with leaf age or environmental conditions, inferences of ci/ca values from δ 13C of bulk leaf tissue should be done cautiously. Tracing of 13C through foliar carbon pools may provide new insight into foliar C constituents and turnover.  相似文献   
113.
The southeastern coastal plain of the United States is a region marked by extraordinary phylogeographic congruence that is frequently attributed to the changing sea levels that occurred during the glacial‐interglacial cycles of the Pleistocene epoch. A phylogeographic break corresponding to the Apalachicola River has been suggested for many species studied to date that are endemic to this region. Here, we used this pattern of phylogeographic congruence to develop and test explicit hypotheses about the genetic structure in the ornate chorus frog (Pseudacris ornata). Using 1299 bp of mtDNA sequence and seven nuclear microsatellite markers in 13 natural populations of P. ornata, we found three clades corresponding to geographically distinct regions; one spans the Apalachicola River (Southern Clade), one encompasses Georgia and South Carolina (Central Clade) and a third comprises more northerly individuals (Northern Clade). However, it does not appear that typical phylogeographic barriers demarcate these clades. Instead, isolation by distance across the range of the entire species explained the pattern of genetic variation that we observed. We propose that P. ornata was historically widespread in the southeastern United States, and that a balance between genetic drift and migration was the root of the genetic divergence among populations. Additionally, we investigated fine‐scale patterns of genetic structure and found the spatial scale at which there was significant genetic structure varied among the regions studied. Furthermore, we discuss our results in light of other phylogeographic studies of southeastern coastal plain organisms and in relation to amphibian conservation and management.  相似文献   
114.
Time budgets of free-living chicks of Arctic Terns Sterna paradisaea and Common Terns S. hirundo throughout development are presented with special reference to changes in time allocation when growth rate varies. Chicks of both species were inactive most of the time observed (87%). Time allocated to the different behaviours changed during development and was generally better correlated with body mass than age. Slower growing nestlings were brooded more and allocated more time to quiescence and less time to locomotion, preening, begging and attacking (the latter two significant only for the Arctic Tern). The energetic implications of variation in time budgets with age and growth rate were considered. Parental brooding resulted in an average energy saving of nearly 40% of an individual nestling's thermoregulatory costs. Whereas thermoregulatory costs remained nearly unchanged in Arctic Tern chicks, these were negatively correlated with growth rate in Common Terns. Tentatively, we estimated a 30% reduction in a nestling's total energy requirement for a 50% reduction in average growth rate for both species.  相似文献   
115.
A wheat canopy model for use in disease management decision support systems   总被引:1,自引:0,他引:1  
A model is described which predicts those aspects of wheat canopy development and growth which are influential in determining the development of epidemics of foliar pathogens, the efficacy of foliar applied fungicides and the impact of disease on yield; specifically the emergence, expansion and senescence of upper culm leaves in relation to anthesis date. This focus on upper leaves allowed prediction of leaf emergence dates by reference to anthesis, rather than sowing. This avoided the step changes in flag leaf emergence date with temperature, reported with earlier models, without the additional complexity of a stochastic approach. The model is designed to be coupled to models of foliar disease, where the primary effect on yield is via reduction in green canopy area and hence interception of photosynthetically active radiation. Mechanisms were incorporated to allow observations of crop development during the growing season to update state variables and adjust parameters affecting future predictions. The model was calibrated using experimental data, and validated against independent observations of crop development on four wheat cultivars across seven contrasting sites in the UK. Anthesis date and upper culm leaf emergence were always predicted within one week of their observed dates.  相似文献   
116.
Abstract The longevity of a leaf is related to the benefit that the plant is able to derive from it. This benefit varies among seasons and as more leaves emerge, such that leaf lifespan can be limited by canopy position rather than physiological age. Using interval‐censored failure time analysis, we investigate leaf lifespan for 34 Mediterranean species in a previously published dataset involving species with different life forms and functional strategies. Failure time regression models were used to determine leaf lifespan, and to investigate how these effects varied among species. Median lifespan estimated for each species with two methods differed by less than 10% on average, but varied from 0.02–19.5% depending on the shape of the underlying failure time distribution. Within shoots, later‐emerging leaves had shorter lifespans for species with longer periods of leaf emergence, and the reverse was true for species with short emergence. Having accounted for the within‐shoot effect, leaves emerging in spring had shorter lifespans, particularly herbaceous species, whereas the reverse was true woody species. These effects were consistent among life forms and successional stages, and consistent with theories of within‐shoot translocation of resources following self‐shading.  相似文献   
117.
The acceptability of various plant species to ovipositing carrot flies was weakly, but significantly correlated with the host's suitability for larval development. Both adult host-plant preferences and larval performance as determined in laboratory experiments explained a part of the variation in susceptibility among the various test plants observed in the field. Across the whole set of plant species examined, antixenosis contributed more substantially to resistance than antibiosis, while the reverse seemed to be true for carrot cultivars.  相似文献   
118.
119.
ABSTRACT The abundance and distribution of carnivores and their habitat are key information needed for status assessment, conservation planning, population management, and assessment of the effects of human development on their habitat and populations. We developed a habitat quality rating system, using existing wolverine (Gulo gulo) distribution, wolverine food, ecosystem mapping, and human development data. We used this and empirically derived estimates of wolverine density to predict wolverine distribution and abundance at a provincial scale. Density estimates for wolverines in high-quality habitat averaged 6.2 wolverines/1,000 km2 (95% CI = 4.2–9.5). We predicted mean densities ranging from 0.3/1,000 km2 in rare-quality habitat to 4.1/1,000 km2 in moderate-quality habitat. Our predicted population estimate for wolverines in British Columbia was 3,530 (95% CI = 2,700-4,760). We predicted highest densities of wolverines in interior mountainous regions, moderate densities in interior plateau and boreal forest regions, and low densities in mainland coastal regions and drier interior plateaus. We predicted that wolverines would be rare on Vancouver Island, along the outer mainland coast, and in the dry interior forests, and absent from the Queen Charlotte Islands, interior grassland environments, and areas of intensive urban development.  相似文献   
120.
Soil moisture affects microbial decay of SOM and rhizosphere respiration (RR) in temperate forest soils, but isolating the response of soil respiration (SR) to summer drought and subsequent wetting is difficult because moisture changes are often confounded with temperature variation. We distinguished between temperature and moisture effects by simulation of prolonged soil droughts in a mixed deciduous forest at the Harvard Forest, Massachusetts. Roofs constructed over triplicate 5 × 5 m2 plots excluded throughfall water during the summers of 2001 (168 mm) and 2002 (344 mm), while adjacent control plots received ambient throughfall and the same natural temperature regime. In 2003, throughfall was not excluded to assess the response of SR under natural weather conditions after two prolonged summer droughts. Throughfall exclusion significantly decreased mean SR rate by 53 mg C m?2 h?1 over 84 days in 2001, and by 68 mg C m?2 h?1 over 126 days in 2002, representing 10–30% of annual SR in this forest and 35–75% of annual net ecosystem exchange (NEE) of C. The differences in SR were best explained by differences in gravimetric water content in the Oi horizon (r2=0.69) and the Oe/Oa horizon (r2=0.60). Volumetric water content of the A horizon was not significantly affected by throughfall exclusion. The radiocarbon signature of soil CO2 efflux and of CO2 respired during incubations of O horizon, A horizon and living roots allowed partitioning of SR into contributions from young C substrate (including RR) and from decomposition of older SOM. RR (root respiration and microbial respiration of young substrates in the rhizosphere) made up 43–71% of the total C respired in the control plots and 41–80% in the exclusion plots, and tended to increase with drought. An exception to this trend was an interesting increase in CO2 efflux of radiocarbon‐rich substrates during a period of abundant growth of mushrooms. Our results suggest that prolonged summer droughts decrease primarily heterotrophic respiration in the O horizon, which could cause increases in the storage of soil organic carbon in this forest. However, the C stored during two summers of simulated drought was only partly released as increased respiration during the following summer of natural throughfall. We do not know if this soil C sink during drought is transient or long lasting. In any case, differential decomposition of the O horizon caused by interannual variation of precipitation probably contributes significantly to observed interannual variation of NEE in temperate forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号