首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1160篇
  免费   127篇
  国内免费   1篇
  1288篇
  2023年   5篇
  2022年   9篇
  2021年   29篇
  2020年   24篇
  2019年   29篇
  2018年   23篇
  2017年   29篇
  2016年   38篇
  2015年   57篇
  2014年   62篇
  2013年   62篇
  2012年   87篇
  2011年   66篇
  2010年   46篇
  2009年   42篇
  2008年   68篇
  2007年   63篇
  2006年   51篇
  2005年   46篇
  2004年   39篇
  2003年   56篇
  2002年   34篇
  2001年   34篇
  2000年   36篇
  1999年   22篇
  1998年   7篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   10篇
  1992年   22篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   13篇
  1987年   18篇
  1986年   15篇
  1985年   17篇
  1984年   9篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1979年   9篇
  1978年   5篇
  1972年   7篇
  1971年   4篇
  1970年   5篇
  1967年   2篇
  1965年   2篇
排序方式: 共有1288条查询结果,搜索用时 15 毫秒
21.
The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog, Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater mean Tb and Tpref than those from forests. In contrast, CTmax and TSM did not differ significantly between habitats. However, CTmax did increase moderately with increasing Tb, suggesting that changes in CTmax may be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. Although O. pumilio exhibited moderate divergence in Tpref, CTmax appears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain their Tb below air temperatures that reach or exceed CTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming. Abstract in Spanish is available with online material.  相似文献   
22.
Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making plants more susceptible to eventual drought predicted by climate change models. With the purpose to study the effect of temperature and water availability on light energy utilization and putative adjustments in photoprotective mechanisms of Deschampsia antarctica Desv., plants were collected from two Antarctic provenances: King George Island and Lagotellerie Island. Plants were cultivated at 5, 10 and 16°C under well‐watered (WW) and water‐deficit (WD, at 35% of the field capacity) conditions. Chlorophyll fluorescence, pigment content and de‐epoxidation state were evaluated. Regardless of provenances, D. antarctica showed similar morphological, biochemical and functional responses to growth temperature. Higher temperature triggered an increase in photochemical activity (i.e. electron transport rate and photochemical quenching), and a decrease in thermal dissipation capacity (i.e. lower xanthophyll pool, Chl a/b and β carotene/neoxanthin ratios). Leaf mass per unit area was reduced at higher temperature, and was only affected in plants exposed to WD at 16°C and exhibiting lower electron transport rate and amount of chlorophylls. D. antarctica is adapted to frequent freezing events, which may induce a form of physiological water stress. Photoprotective responses observed under WD contribute to maintain a stable photochemical activity. Thus, it is possible that short‐term temperature increases could favor the photochemical activity of this species. However, long‐term effects will depend on the magnitude of changes and the plant's ability to adjust to new growth temperature.  相似文献   
23.
24.
The purpose of this study was to determine gustatory thresholds for five different food-associated sugars in Ateles geoffroyi. Using a two-bottle test, three adult spider monkeys were found to significantly prefer concentrations as low as 3 mM sucrose, 15 mM fructose, 20 mM glucose, and 10 mM lactose over tap water. Maltose was significantly discriminated down to 20 mM with individual animals showing either a preference or an aversion, or an inverted U-shaped function of preference toward higher concentrations of this carbohydrate. The results showed the spider monkey to respond to lower sugar concentrations compared to other nonhuman primates tested so far and thus support the assumptions that Ateles geoffroyi may use sweetness as a criterion for food selection, and that the remarkably high sweet-taste sensitivity of this frugivorous species might be correlated with its dietary specialization. © 1996 Wiley-Liss, Inc.  相似文献   
25.
Lipopolysaccharide (LPS, i.e. endotoxin) present in meningococcal outer-membrane protein and polysaccharide preparations made for vaccine use was quantitated by a silver-stain method following SDS-PAGE. The reactivities of LPS in the preparations were also measured by rabbit pyrogenicity and Limulus amoebocyte lysate (LAL) assay. Although rabbit pyrogenicity and LAL assay are more sensitive than the silver stain method, the latter provided an actual amount of LPS present in the protein or in the polysaccharide. For a meningococcal protein preparation, rabbit pyrogenicity showed about one-tenth, and even less by LAL assay, of the actual amount of LPS. This is because protein-bound LPS in meningococcal protein preparations is about 10-fold less active in causing fever in rabbits, and 20- to 40-fold less active in the gelation of LAL than the same amount of a purified free LPS which is generally used as a reference in quantitating LPS in these two assays. As for the small amount of LPS present in a meningococcal polysaccharide preparation, similar LPS content was obtained when measured by the three methods suggesting that the LPS is not bound to the polysaccharide in contrast to that in the proteins mentioned above. The purified meningococcal LPS was pyrogenic in rabbits at 1 ng/kg.  相似文献   
26.
Horizontal gene transfer (HGT) spreads genetic diversity by moving genes across species boundaries. By rapidly introducing newly evolved genes into existing genomes, HGT circumvents the slow step of ab initio gene creation and accelerates genome innovation. However, HGT can only affect organisms that readily exchange genes (exchange communities). In order to define exchange communities and understand the internal and external environmental factors that regulate HGT, we analyzed approximately 20,000 genes contained in eight free-living prokaryotic genomes. These analyses indicate that HGT occurs among organisms that share similar factors. The most significant are genome size, genome G/C composition, carbon utilization, and oxygen tolerance.  相似文献   
27.
Horizontal gene transfer in microbial genome evolution   总被引:1,自引:0,他引:1  
Horizontal gene transfer is the collective name for processes that permit the exchange of DNA among organisms of different species. Only recently has it been recognized as a significant contribution to inter-organismal gene exchange. Traditionally, it was thought that microorganisms evolved clonally, passing genes from mother to daughter cells with little or no exchange of DNA among diverse species. Studies of microbial genomes, however, have shown that genomes contain genes that are closely related to a number of different prokaryotes, sometimes to phylogenetically very distantly related ones. (Doolittle et al., 1990, J. Mol. Evol. 31, 383-388; Karlin et al., 1997, J. Bacteriol. 179, 3899-3913; Karlin et al., 1998, Annu. Rev. Genet. 32, 185-225; Lawrence and Ochman, 1998, Proc. Natl. Acad. Sci. USA 95, 9413-9417; Rivera et al., 1998, Proc. Natl. Acad. Sci. USA 95, 6239-6244; Campbell, 2000, Theor. Popul. Biol. 57 71-77; Doolittle, 2000, Sci. Am. 282, 90-95; Ochman and Jones, 2000, Embo. J. 19, 6637-6643; Boucher et al. 2001, Curr. Opin., Microbiol. 4, 285-289; Wang et al., 2001, Mol. Biol. Evol. 18, 792-800). Whereas prokaryotic and eukaryotic evolution was once reconstructed from a single 16S ribosomal RNA (rRNA) gene, the analysis of complete genomes is beginning to yield a different picture of microbial evolution, one that is wrought with the lateral movement of genes across vast phylogenetic distances. (Lane et al., 1988, Methods Enzymol. 167, 138-144; Lake and Rivera, 1996, Proc. Natl. Acad. Sci. USA 91, 2880-2881; Lake et al., 1999, Science 283, 2027-2028).  相似文献   
28.
We used a DNA-protein interaction screening method to isolate a cDNA, Erg-3, whose product binds to a site, designated pi, present in the immunoglobulin (Ig) heavy-chain gene enhancer. Erg-3 is an alternatively spliced product of the erg gene and contains an Ets DNA-binding domain. Fli-1 and PU.1, related Ets proteins, also bind to the same site. In addition, PU.1 binds to a second site, designated microB, in the Ig heavy-chain enhancer. We demonstrate that the pi binding site is crucial for Ig heavy-chain gene enhancer function. In addition, we show that Erg-3 and Fli.1, but not PU.1, can activate a reporter construct containing a multimer of protein-binding sites, synergistically with helix-loop-helix protein E12. We discuss how combinatorial interactions between members of the helix-loop-helix and Ets families may account for the tissue specificity of these proteins.  相似文献   
29.
30.
Background. Helicobacter pylori is the main cause of gastritis and a primary carcinogen. The aim of this study was to assess oxidative damage in mucosal compartments of gastric mucosa in H. pylori positive and negative atrophic and nonatrophic gastritis. Materials and methods. Five groups of 10 patients each were identified according to H. pylori positive or negative chronic atrophic (Hp‐CAG and CAG, respectively) and nonatrophic gastritis (Hp‐CG and CG, respectively), and H. pylori negative normal mucosa (controls). Oxidative damage was evaluated by nitrotyrosine immunohistochemistry in the whole mucosa and in each compartment at baseline and at 2 and 12 months after eradication. Types of intestinal metaplasia were classified by histochemistry. Results. Total nitrotyrosine levels appeared significantly higher in H. pylori positive than in negative patients, and in Hp‐CAG than in Hp‐CG (p < .001); no differences were found between H. pylori negative gastritis and normal mucosa. Nitrotyrosine were found in foveolae and intestinal metaplasia only in Hp‐CAG. At 12 months after H. pylori eradication, total nitrotyrosine levels showed a trend toward a decrease in Hp‐CG and decreased significantly in Hp‐CAG (p = .002), disappearing from the foveolae (p = .002), but remaining unchanged in intestinal metaplasia. Type I and II of intestinal metaplasia were present with the same prevalence in Hp‐CAG and CAG, and did not change after H. pylori eradication. Conclusions. Oxidative damage of the gastric mucosa increases from Hp‐CG to Hp‐CAG, involving the foveolae and intestinal metaplasia. H. pylori eradication induces a complete healing of foveolae but not of intestinal metaplasia, reducing the overall oxidative damage in the mucosa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号