首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7720篇
  免费   579篇
  国内免费   1篇
  2012年   834篇
  2011年   997篇
  2010年   123篇
  2009年   55篇
  2008年   743篇
  2007年   740篇
  2006年   646篇
  2005年   634篇
  2004年   582篇
  2003年   559篇
  2002年   473篇
  2001年   362篇
  2000年   498篇
  1999年   196篇
  1998年   22篇
  1997年   17篇
  1995年   18篇
  1994年   13篇
  1993年   14篇
  1992年   15篇
  1991年   11篇
  1990年   7篇
  1989年   8篇
  1987年   7篇
  1986年   7篇
  1979年   7篇
  1977年   8篇
  1959年   31篇
  1958年   55篇
  1957年   46篇
  1956年   44篇
  1955年   49篇
  1954年   34篇
  1953年   40篇
  1952年   31篇
  1951年   23篇
  1950年   24篇
  1949年   24篇
  1948年   25篇
  1946年   9篇
  1945年   15篇
  1939年   9篇
  1938年   8篇
  1937年   8篇
  1936年   9篇
  1935年   11篇
  1932年   10篇
  1931年   10篇
  1929年   7篇
  1924年   7篇
排序方式: 共有8300条查询结果,搜索用时 15 毫秒
71.
Neurofibrillary lesions are characteristic for a group of human diseases, named tauopathies, which are characterized by prominent intracellular accumulations of abnormal filaments formed by the microtubule-associated protein Tau. The tauopathies are accompanied by abnormal changes in Tau protein, including pathological conformation, somatodendritic mislocalization, hyperphosphorylation, and aggregation, whose interdependence is not well understood. To address these issues we have created transgenic mouse lines in which different variants of full-length Tau are expressed in a regulatable fashion, allowing one to switch the expression on and off at defined time points. The Tau variants differ by small mutations in the hexapeptide motifs that control the ability of Tau to adopt a beta-structure conformation and hence to aggregate. The "pro-aggregation" mutant DeltaK280, derived from one of the mutations observed in frontotemporal dementias, aggregates avidly in vitro, whereas the "anti-aggregation" mutant DeltaK280/PP cannot aggregate because of two beta-breaking prolines. In the transgenic mice, the pro-aggregation Tau induces a pathological conformation and pre-tangle aggregation, even at low expression levels, the anti-aggregation mutant does not. This illustrates that abnormal aggregation is primarily controlled by the molecular structure of Tau in vitro and in the organism. Both variants of Tau become mislocalized and hyperphosphorylated independently of aggregation, suggesting that localization and phosphorylation are mainly a consequence of increased concentration. These pathological changes are reversible when the expression of Tau is switched off. The pro-aggregation Tau causes a strong reduction in spine synapses.  相似文献   
72.
73.
Signaling through the mammalian target of rapamycin complex 1 (mTORC1) is positively regulated by amino acids and insulin. PRAS40 associates with mTORC1 (which contains raptor) but not mTORC2. PRAS40 interacts with raptor, and this requires an intact TOR-signaling (TOS) motif in PRAS40. Like TOS motif-containing proteins such as eIF4E-binding protein 1 (4E-BP1), PRAS40 is a substrate for phosphorylation by mTORC1. Consistent with this, starvation of cells of amino acids or treatment with rapamycin alters the phosphorylation of PRAS40. PRAS40 binds 14-3-3 proteins, and this requires both amino acids and insulin. Binding of PRAS40 to 14-3-3 proteins is inhibited by TSC1/2 (negative regulators of mTORC1) and stimulated by Rheb in a rapamycin-sensitive manner. This confirms that PRAS40 is a target for regulation by mTORC1. Small interfering RNA-mediated knockdown of PRAS40 impairs both the amino acid- and insulin-stimulated phosphorylation of 4E-BP1 and the phosphorylation of S6. However, this has no effect on the phosphorylation of Akt or TSC2 (an Akt substrate). These data place PRAS40 downstream of mTORC1 but upstream of its effectors, such as S6K1 and 4E-BP1.  相似文献   
74.
75.
Based on the prediction that histone lysine demethylases may contain the JmjC domain, we examined the methylation patterns of five knock-out strains (ecm5Delta, gis1Delta, rph1Delta, jhd1Delta, and jhd2Delta (yjr119cDelta)) of Saccharomyces cerevisiae. Mass spectrometry (MS) analyses of histone H3 showed increased modifications in all mutants except ecm5Delta. High-resolution MS was used to unequivocally differentiate trimethylation from acetylation in various tryptic fragments. The relative abundance of specific fragments indicated that histones K36me3 and K4me3 accumulate in rph1Delta and jhd2Delta strains, respectively, whereas both histone K36me2 and K36me accumulate in gis1Delta and jhd1Delta strains. Analyses performed with strains overexpressing the JmjC proteins yielded changes in methylation patterns that were the reverse of those obtained in the complementary knock-out strains. In vitro enzymatic assays confirmed that the JmjC domain of Rph1 specifically demethylates K36me3 primarily and K36me2 secondarily. Overexpression of RPH1 generated a growth defect in response to UV irradiation. The demethylase activity of Rph1 is responsible for the phenotype. Collectively, in addition to Jhd1, our results identified three novel JmjC domain-containing histone demethylases and their sites of action in budding yeast S. cerevisiae. Furthermore, the methodology described here will be useful for identifying histone demethylases and their target sites in other organisms.  相似文献   
76.
ADAMTS13 is a plasma metalloproteinase that cleaves von Willebrand factor to smaller, less thrombogenic forms. Deficiency of ADAMTS13 activity in plasma leads to thrombotic thrombocytopenic purpura. ADAMTS13 contains eight thrombospondin type 1 repeats (TSR), seven of which contain a consensus sequence for the direct addition of fucose to the hydroxyl group of serine or threonine. Mass spectral analysis of tryptic peptides derived from human ADAMTS13 indicate that at least six of the TSRs are modified with an O-fucose disaccharide. Analysis of [(3)H]fucose metabolically incorporated into ADAMTS13 demonstrated that the disaccharide has the structure glucose-beta1,3-fucose. Mutation of the modified serine to alanine in TSR2, TSR5, TSR7, and TSR8 reduced the secretion of ADAMTS13. Mutation of more than one site dramatically reduced secretion regardless of the sites mutated. When the expression of protein O-fucosyltransferase 2 (POFUT2), the enzyme that transfers fucose to serines in TSRs, was reduced using siRNA, the secretion of ADAMTS13 decreased. A similar outcome was observed when ADAMTS13 was expressed in a cell line unable to synthesize the donor for fucose addition, GDP-fucose. Although overexpression of POFUT2 did not affect the secretion of wild-type ADAMTS13, it did increase the secretion of the ADAMTS13 TSR1,2 double mutant but not that of ADAMTS13 TSR1-8 mutant. Together these findings indicate that O-fucosylation is functionally significant for secretion of ADAMTS13.  相似文献   
77.
A major aim of proteomics is the identification of proteins in a given proteome at a given metabolic state. This protocol describes the step-by-step labeling, purification and detection of newly synthesized proteins in mammalian cells using the non-canonical amino acid azidohomoalanine (AHA). In this method, metabolic labeling of newly synthesized proteins with AHA endows them with the unique chemical functionality of the azide group. In the subsequent click chemistry tagging reaction, azide-labeled proteins are covalently coupled to an alkyne-bearing affinity tag. After avidin-based affinity purification and on-resin trypsinization, the resulting peptide mixture is subjected to tandem mass spectrometry for identification. In combination with deuterated leucine-based metabolic colabeling, candidate proteins can be immediately validated. Bioorthogonal non-canonical amino-acid tagging can be combined with any subcellular fractionation, immunopurification or other proteomic method to identify specific subproteomes, thereby reducing sample complexity and enabling the identification of subtle changes in a proteome. This protocol can be completed in 5 days.  相似文献   
78.
Mammalian orthoreoviruses (reoviruses) are highly tractable experimental models for studies of double-stranded (ds) RNA virus replication and pathogenesis. Reoviruses infect respiratory and intestinal epithelium and disseminate systemically in newborn animals. Until now, a strategy to rescue infectious virus from cloned cDNA has not been available for any member of the Reoviridae family of dsRNA viruses. We report the generation of viable reovirus following plasmid transfection of murine L929 (L) cells using a strategy free of helper virus and independent of selection. We used the reovirus reverse genetics system to introduce mutations into viral capsid proteins sigma1 and sigma3 and to rescue a virus that expresses a green fluorescent protein (GFP) transgene, thus demonstrating the tractability of this technology. The plasmid-based reverse genetics approach described here can be exploited for studies of reovirus replication and pathogenesis and used to develop reovirus as a vaccine vector.  相似文献   
79.
Mitotic progression is controlled by proteolytic destruction of securin and cyclin. The mitotic E3 ubiquitin ligase, known as the anaphase promoting complex or cyclosome (APC/C), in partnership with its activators Cdc20p and Cdh1p, targets these proteins for degradation. In the presence of defective kinetochore-microtubule interactions, APC/C(Cdc20) is inhibited by the spindle checkpoint, thereby delaying anaphase onset and providing more time for spindle assembly. Cdc20p interacts directly with Mad2p, and its levels are subject to careful regulation, but the precise mode(s) of APC/C( Cdc20) inhibition remain unclear. The mitotic checkpoint complex (MCC, consisting of Mad3p, Mad2p, Bub3p and Cdc20p in budding yeast) is a potent APC/C inhibitor. Here we focus on Mad3p and how it acts, in concert with Mad2p, to efficiently inhibit Cdc20p. We identify and analyse the function of two motifs in Mad3p, KEN30 and KEN296, which are conserved from yeast Mad3p to human BubR1. These KEN amino acid sequences resemble 'degron' signals that confer interaction with APC/C activators and target proteins for degradation. We show that both Mad3p KEN boxes are necessary for spindle checkpoint function. Mutation of KEN30 abolished MCC formation and stabilised Cdc20p in mitosis. In addition, mutation of Mad3-KEN30, APC/C subunits, or Cdh1p, stabilised Mad3p in G1, indicating that the N-terminal KEN box could be a Mad3p degron. To determine the significance of Mad3p turnover, we analysed the consequences of MAD3 overexpression and found that four-fold overproduction of Mad3p led to chromosome bi-orientation defects and significant chromosome loss during recovery from anti-microtubule drug induced checkpoint arrest. In conclusion, Mad3p KEN30 mediates interactions that regulate the proteolytic turnover of Cdc20p and Mad3p, and the levels of both of these proteins are critical for spindle checkpoint signaling and high fidelity chromosome segregation.  相似文献   
80.
Biometric evidence that sexual selection has shaped the hominin face   总被引:1,自引:0,他引:1  
We consider sex differences in human facial morphology in the context of developmental change. We show that at puberty, the height of the upper face, between the lip and the brow, develops differently in males and females, and that these differences are not explicable in terms of sex differences in body size. We find the same dimorphism in the faces of human ancestors. We propose that the relative shortening in men and lengthening in women of the anterior upper face at puberty is the mechanistic consequence of extreme maxillary rotation during ontogeny. A link between this developmental model and sexual dimorphism is made for the first time, and provides a new set of morphological criteria to sex human crania. This finding has important implications for the role of sexual selection in the evolution of anthropoid faces and for theories of human facial attractiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号