首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   14篇
  2018年   2篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   9篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1986年   3篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1977年   2篇
  1975年   3篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1968年   2篇
  1965年   1篇
  1961年   1篇
  1959年   4篇
  1958年   15篇
  1957年   9篇
  1956年   5篇
  1955年   3篇
  1954年   9篇
  1953年   7篇
  1952年   10篇
  1951年   9篇
  1950年   8篇
  1949年   7篇
  1948年   3篇
  1930年   1篇
  1926年   1篇
排序方式: 共有219条查询结果,搜索用时 406 毫秒
51.
52.
53.
54.
55.
56.
SYNOPSIS. This paper is a brief account of both amicronucleate and sexually active strains of Tetrahymena pyriformis and their distribution with some comments on their possible evolution.  相似文献   
57.
58.
Summary 1. The objectives were: (i) to check the validity of a new growth model; (ii) to examine the relationship between population density and both mean mass and mean growth rate and (iii) to discover if compensatory growth occurred. First (0+) and second (1+) year‐old juvenile sea‐trout were sampled by electrofishing at the beginning and end of the summer from 1967 to 2000. Additional samples were taken in some years in winter and in the critical period for survival when the fry first emerge from the gravel. The trout left the stream as pre‐smolts in May, soon after their second birthday. 2. A growth model ( Elliott, Hurley & Fryer, 1995 ) estimated the mean mass of the trout over the 2 years spent in fresh water. The date and mean mass at the start of the growth period were defined as the median date for fry emerging from the gravel and their mean mass at emergence, both being estimated from individual‐based models ( Elliott & Hurley, 1998a, b ). 3. The variation in mean mass among year‐classes was small for newly‐emerged fry (CV = 6.2%), maximum at the start of the first summer of the life cycle (CV = 38.1%), and then decreased gradually for successive life‐stages to a low value for pre‐smolts (CV = 10.8%). Mean mass was not related to population density and, therefore, mean growth rate was density‐independent. Growth in the first, but not the second, winter of the life cycle was lower than model prediction, but when it was assumed in the model that there was no first‐winter growth, there was good agreement in most year‐classes between model estimated values and observed mean mass. Exceptions were that mean masses and growth rates for 0+ trout after four summer droughts were lower than expected, but compensatory growth followed, so that observed and expected masses were similar for 1+ trout. 4. Pre‐smolt mean mass on 30 April measured total growth achieved in the freshwater phase of the life cycle. This was significantly related to mean mass at the end of the first and second summers of the life cycle, but not to the emergence date and mean mass of emerging fry. 5. These juvenile sea‐trout were growing at their maximum potential in most year‐classes but when this was not achieved, compensatory growth soon restored their mass to values expected from the model. This ensured a low variation in the mean mass of pre‐smolts just before they migrated to the sea. However, the latter mass was higher in more recent year‐classes (1987–98) than in previous ones (1967–86), demonstrating the effect of slightly higher stream temperature. This study has shown the importance of developing realistic growth models in order to detect departure from maximum potential growth, and the more subtle effects of temperature change, possibly due to the effects of climate change.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号