首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   11篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1986年   3篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   3篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1968年   2篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1959年   4篇
  1958年   15篇
  1957年   9篇
  1956年   5篇
  1955年   3篇
  1954年   9篇
  1953年   7篇
  1952年   10篇
  1951年   9篇
  1950年   8篇
  1949年   7篇
  1948年   3篇
  1930年   1篇
  1926年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
31.
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.  相似文献   
32.
33.
1. As many invertebrates are nocturnal, their spatial distribution and habitat preferences may change from day to night. Both aspects are examined for Gammarus pulex by testing the hypotheses: (i) a power function was a suitable model for the spatial distribution of the shrimps in both day and night; (ii) diurnal and nocturnal spatial distributions were significantly different; (iii) diurnal and nocturnal habitat preferences were significantly different. Five different life‐stages were treated separately. To ensure that the conclusions were consistent, large samples were taken near midday and midnight in April, June and November over 4 years at two sites about 3 km apart in a stony stream: downstream (n = 30) and upstream (n = 50). 2. The first and second hypotheses were supported at both sites. A power function, relating spatial variance (s2) to mean (m), was an excellent fit in all analyses (P < 0.001, r2 > 0.91), i.e. the spatial variance was density‐dependent. All five life‐stages were aggregated in the day. At night, the degree of aggregation increased for juveniles at higher densities but decreased for juveniles at lower densities, increased for immature females and males, but decreased slightly for mature females and especially mature males, the latter being close to a random distribution. There were no significant differences between sites, in spite of the lower numbers at the downstream site. 3. The third hypothesis was tested at only the upstream site and supported by comparisons between shrimp densities and 13 physical variables (distance from bank, water depth, water velocity, ten particle size‐classes), and three non‐physical variables (dry weights of bryophytes, leaf material, organic detritus). During the day, densities were strongly related to particle sizes with the following preferences: 0.5–8 mm for juveniles, 8–256 mm for the other life‐stages with a weaker relationship for males. There were no significant positive relationships with the other variables, apart from bryophytes for immature shrimps and adults. At night, densities were unrelated to particle size; juveniles and immature shrimps preferred low water velocities near the banks, often where leaf material and organic detritus accumulated, females often preferred medium water velocities slightly away from the banks, and males showed no habitat preferences. 4. Day samples do not provide a complete picture of habitat preferences and probably identify refuge habitats. Day–night changes in spatial distribution and habitat preferences are an essential part of the behavioural dynamics of the shrimps and should be investigated in other species.  相似文献   
34.
An experiment was carried out to determine the effects of elevated CO2, elevated temperatures, and altered water regimes in native shortgrass steppe. Intact soil cores dominated by Bouteloua gracilis, a C4 perennial grass, or Pascopyrum smithii, a C3 perennial grass, were placed in growth chambers with 350 or 700 μL L?1 atmospheric CO2, and under either normal or elevated temperatures. The normal regime mimicked field patterns of diurnal and seasonal temperatures, and the high-temperature regime was 4 °C warmer. Water was supplied at three different levels in a seasonal pattern similar to that observed in the field. Total biomass after two growing seasons was 19% greater under elevated CO2, with no significant difference between the C3 and C4 grass. The effect of elevated CO2 on biomass was greatest at the intermediate water level. The positive effect of elevated CO2 on shoot biomass was greater at normal temperatures in B. gracilis, and greater at elevated temperatures in P. smithii. Neither root-to-shoot ratio nor production of seed heads was affected by elevated CO2. Plant tissue N and soil inorganic N concentrations were lower under elevated Co2, but no more so in the C3 than the C4 plant. Elevated CO2 appeared to increase plant N limitation, but there was no strong evidence for an increase in N limitation or a decrease in the size of the CO2 effect from the first to the second growing season. Autumn samples of large roots plus crowns, the perennial organs, had 11% greater total N under elevated CO2, in spite of greater N limitation.  相似文献   
35.
36.
1. From 1966 to 1995, dates were recorded when adult alder-flies, Sialis lutaria L., were first seen (30-year range: 23 April – 25 May), 50% of the maximum density occurred (4 May – 4 June), and maximum density occurred (11 May – 17 June) along 200 m of Windermere shore. These emergence dates occurred at similar temperatures, estimated by mean values for both the emergence date and the week prior to emergence. The latter was the least variable at 10.1 °C (95% CL ± 0.37) for start of emergence, 11.2 °C (± 0.49) for 50% maximum density, 14.2 °C (± 0.51) for maximum density.
2. Final-instar larvae pupated in damp soil just above the water line. As laboratory temperatures were increased slowly from an initial 5 °C, the cumulative number of larvae leaving the water to pupate increased. A quadratic equation described this relationship from a threshold temperature of 7.2 °C to completion at 14.0 °C (50% point, 9.3 °C). The relationship between successful pupations and constant temperatures in the laboratory was well described by a quadratic equation with an optimum 14.9 °C (over 90% success) and no success outside the range 7–23 °C. A negative power-function described the relationship between days required for pupation and temperature, ranging from c . 28 days at 8.2 °C to c . 4 days at 22.1 °C.
3. Dates for larvae leaving the lake to pupate were back-calculated from dates for adult emergence, using the power-function for pupation time. Mean temperatures for estimated dates on which larvae left the lake to pupate were less variable than those for adult emergence, being 7.5 °C (± 0.20) for the start of pupation, 9.4 °C (± 0.16) for 50% maximum density, 13.7 °C (± 0.16) for maximum density. These values are similar to those obtained in the laboratory and can be used to predict pupation and adult emergence for different temperature regimes.  相似文献   
37.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   
38.
39.
Brown trout of different weights (range 8-358 g) were fed to satiation at fifteen different water temperatures (range 3.8–21.6°C. Both the weight of the trout (Wg) and the water temperature (T°C) affected the maximum weight of food (Q mg) consumed in a meal, and the relationship between the three variables was well described by a multiple regression equation which can be used to estimate the value of Q (with 95% confidence limits) for trout of different weights at different temperatures between 3.8°C and 21.6°C. The satiation time (with 95% confidence limits) can also be estimated from a multiple regression equation for trout of different weights at temperatures between 6.8°C and 18.1°C. Estimates from the multiple regression equations were applicable to a wide range of food organisms with the exception of larvae ofTenebrio molitor (mealworms). Appetite (measured by voluntary food intake) varied with temperature and was greatest between 13.3°C and 18.4°C. From comparisons with the results of other workers, it was concluded that the maximum amount of food consumed in a meal may provide sufficient calories for both the daily metabolic requirements and the daily maintenance requirements of a trout at temperatures between 3.8°C and 18.4°C, but not at temperatures above 18.4°C.  相似文献   
40.
The emerging patterns of life in contemporary Africa are most apparent in the often competing social and political groupings which have developed as basically rural populations have attempted to deal with the complexities of modern life. During the colonial period, these new groupings—whether rural or urban—were under the control of a dominant administration and seldom came into overt conflict. However, this is not now the case in most African towns. There, as in Ouagadougou, the capital of Upper Volta, a multiplicity of socio-political factions and multiple governing bodies all claim rights to power and legitimacy. The result is more open competition and conflict. This suggests that the "stability" claimed for colonial African societies was more a function of exogenous political factors than of inherent structural features in the social systems described. Until new dominant political structures emerge in Africa and establish mediating linkages with other institutional forms, there may well be a period of conflict and revolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号