首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   11篇
  194篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1986年   3篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   3篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1968年   2篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1959年   4篇
  1958年   15篇
  1957年   9篇
  1956年   5篇
  1955年   3篇
  1954年   9篇
  1953年   7篇
  1952年   10篇
  1951年   9篇
  1950年   8篇
  1949年   7篇
  1948年   3篇
  1930年   1篇
  1926年   1篇
排序方式: 共有194条查询结果,搜索用时 9 毫秒
161.
1. The long‐term suitability of Bassenthwaite Lake as a habitat for vendace (Coregonus albula) was assessed using two models. The first was the phytoplankton model (PROTECH) that provided temperature and phytoplankton biomass outputs that were used to drive a second model of lake oxygen (LOX). 2. Both temperature and oxygen concentrations were used to define the available habitat for the adult vendace, using 18 °C as an upper and 2 mg L?1 as a lower threshold, respectively. The outputs of both models were compared with 4 years of observed data for the purposes of validation and produced good simulations of water temperature, total chlorophyll a and oxygen concentrations in the epilimnion, hypolimnion and at the lake bottom. 3. Using the outputs of a regional climate model (RCM) simulating 20 years of both present and future climate conditions for this part of the United Kingdom, both models were re‐run. These data suggest the future climate will cause a mean increase of >2 °C in water temperature, little change in overall phytoplankton biomass and a 10% decline in oxygen concentration. 4. Using the thresholds defined above, the habitat volume will decline greatly under the future climate scenarios, with all of the 20 years simulated having periods of zero habitat volume for >7 consecutive days, primarily caused by high temperature. These results suggest that the long‐term viability of the lake as a habitat for this rare fish is extremely low.  相似文献   
162.
Comparisons were made of the systemic action of phorate, menazon and dimethoate on Aphis fabae Scop, and on the eggs of the aphidophagous Anthocoridae Anthocoris nemorum (L.) and A. confusus Reut., which are laid within plant tissue. Against 4th-instar apterous A. fabae the order of toxicity of the insecticides taken up by roots of the field bean Vicia faba L. was: menazon > dimethoate > phorate. Phorate concentrations needed to kill all A. fabae (10–15 ppm of wet weight of plant) killed most A. nemorum eggs but did not harm A. confusus eggs. Few A. nemorum eggs were killed by 15 ppm of menazon or 5 ppm of dimethoate. In the field a commercial in-row treatment of 1·5 lb/acre of phorate applied as granules in the seed drill of field beans sown in late April killed 86 % of eggs laid in June by overwintered A. nemorum and 30% of those laid in late July by second-generation females. Plants initially treated with 6 lb of in-row phorate per acre killed 74% of A. nemorum eggs in late July but did not harm A. confusus eggs. A. nemorum eggs laid in early June were unharmed by 1·5 lb/acre of in-row menazon. Of the A. nemorum eggs, 92–96% were inserted into the stipules and leaf margins of young bean plants, i.e. in the region (peripheral and distal part of the leaf) where most 32P from labelled phorate accumulates after root uptake. The egg-laying sites of A. nemorum in potatoes and brussels sprouts (edges of the leaves) and in oats (the leaf tips) are also where most of the 32P accumulates. In contrast, 98% of A. confusus eggs were laid in the stems, petioles and leaf midribs of field beans, where there was generally much less 32P from labelled phorate.  相似文献   
163.
164.
165.
166.
1. It is important for species recovery and conservation management projects to know the minimum viable population size for rare and endangered species, such as the medicinal leech, Hirudo medicinalis. Therefore, using a catch‐removal method, this study estimated every two years (1986, 1988, 1990, 1992) the total number of medicinal leeches in a tarn in the English Lake District, and the number of mature adults in the population. 2. Four samples were taken each year in June and July, when water temperatures exceeded 20 °C. Population size was estimated both by maximum likelihood and regression methods. All leeches were weighed alive and size groups were separated by polymodal frequency analysis. A small sample of the blood meal in each leech gut was taken before the leeches were returned to the tarn, and was used to estimate the proportion of mammalian and non‐mammalian blood in the meals. 3. Both methods of estimation produced similar values, increasing confidence in the population estimates. Values for the total population in June and July varied among years from 248 to 288, the maximum value being only 16% higher than the minimum. Values for the number of mature leeches varied from 48 to 58 (19–20% of the total population), and this was an estimate of the effective population size. 4. There were four size groups. The largest mature leeches (live weight >5 g) in group IV formed only 1% of the population, and the smallest (0.02–0.5 g) in group I 14–17%. Most leeches were in two overlapping groups of immature (64–67% of population) and mature (18%) leeches with size ranges of 0.4–3.4 g and 2.5–5 g respectively. The percentage of leeches in each size group was very consistent among years. Blood meals were found in 38–44% of the leeches in group I, 45–50% in group II, 70–75% in group III, and 100% in group IV, but mammalian blood was present only in larger mature leeches (>3.5 g). 5. Medicinal leeches were first detected in the tarn in 1980 and are still present in 2007, so the population has persisted for at least 27 years. Compared with minimum viable population sizes for other species, including many endangered species, values for this medicinal leech population are extremely low, but may be typical of some rare freshwater invertebrates in isolated habitats.  相似文献   
167.
168.
169.
170.
Dasyclads (members of Order Dasycladales: Algae, Chlorophyta) are reviewed for evidence of reproductive structures in the fossil state, and then compared with what is known of the reproductive processes in living examples. The effects of poor preservation in most of the fossils are shown to result in many uncertainties, and the resulting degree of interpretation required is emphasized. Selected genera of fossil dasyclads considered relevant to this problem are briefly analysed and discussed: Archaeobatophora (Ordovician), Kulikia (Carboniferous), Imperiella (Permian), Stichoporella (Jurassic) and Cympolia (Cretaceous to Recent). The pioneer views of J. Pia on dasyclad reproduction through geological time are seen to need much modification in the light of later work. The fundamental dasyclad nucleus-fragmentation-reproduction mechanism is believed to have operated within the great morphological variety of known dasyclads, giving rise to modification in genera where basic evolution was structural. In this way the variety of dasyclads can be seen to be the result of varied morphological evolution, often modified by the consistently simple basic reproductive mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号