首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   4篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   3篇
  1965年   3篇
  1957年   2篇
  1956年   1篇
  1930年   1篇
  1929年   1篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
61.
Although there have been few studies of self‐scratching in primates, some have reported distinct differences in whether hands or feet are used, and these variations seem to reflect the evolutionary history of the Order. Monkeys and prosimians use both hands and feet to self‐scratch while African great apes use hands almost exclusively. Gibbons represent an evolutionary divergence between monkeys and great apes and incidental observations at the Gibbon Conservation Center pointed to a difference in self‐scratching among the four extant gibbon genera (Hoolock, Nomascus, Symphalangus, and Hylobates). To validate and further explore these preliminary observations, we collected systematic data on self‐scratching from 32 gibbons, including nine species and all four genera. To supplement gibbon data, we also collected self‐scratching information from 18 great apes (four species), five prosimians (two species), 26 New World Monkeys (nine species) and 20 Old World Monkeys (seven species). All monkeys and some prosimians used both hands and feet to self‐scratch, whereas one prosimian species used only feet. All African great apes used hands exclusively (orangutans were an exception displaying occasional foot‐use). This appears to represent a fundamental difference between monkeys and great apes in limb use. Interestingly, there was a clear difference in self‐scratching between the four gibbon genera. Hylobates and Symphalangus self‐scratched only with hands (like all African great apes), while Hoolock and Nomascus self‐scratched with both hands and feet (like monkeys and prosimians). This difference in gibbon behavior may reflect the evolutionary history of gibbons as Hoolock and Nomascus are thought to have evolved before both Hylobates and Symphalangus. What evolutionary pressures led to this divergent pattern is currently opaque; however, this shift in limb preference may result from niche separation across the order facilitating differences in the behavioral repertoire associated with hind and forelimbs. Am. J. Primatol. 74:1035‐1043, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
62.
63.
Projecting future fire activity in Amazonia   总被引:1,自引:0,他引:1  
Fires are major disturbances for ecosystems in Amazonia. They affect vegetation succession, alter nutrients and carbon cycling, and modify the composition of the atmosphere. Fires in this region are strongly related to land‐use, land‐cover and climate conditions. Because these factors are all expected to change in the future, it is reasonable to expect that fire activity will also change. Models are needed to quantitatively estimate the magnitude of these potential changes. Here we present a new fire model developed by relating satellite information on fires to corresponding statistics on climate, land‐use and land‐cover. The model is first shown to reproduce the main contemporary large‐scale features of fire patterns in Amazonia. To estimate potential changes in fire activity in the future, we then applied the model to two alternative scenarios of development of the region. We find that in both scenarios, substantial changes in the frequency and spatial patterns of fires are expected unless steps are taken to mitigate fire activity.  相似文献   
64.
ABSTRACT. Actin, the major protein of amebae of Naegleria gruberi, proved to be strongly immunogenic in rabbits. The resulting precipitating antibodies are specific to actin of Naegleria. In a competitive solid-phase radioimmunoassay, these antibodies bound similarly to Naegleria G- and F-actin. Actins from amebae of Acanthamoeba and Dictyostelium, plasmodia of Physarum, sea urchin eggs, and vertebrate muscles gave no competition in the radioimmunoassay. Estimates of the amount of actin in Naegleria amebae ranged from a minimum of 5% of the total cell protein by radioimmunoassay to a maximum of 16% by electrophoresis. The unusual species specificity of these antibodies indicates that Naegleria actin, although conserved in many properties, is different enough to have unique antigenic determinants.  相似文献   
65.
To assess the requirement for specific or possibly non-specific epithelial instructions for mesenchymal cell differentiation, we designed studies to evaluate and compare homotypic with heterotypic tissue recombinations across vertebrate species. These studies further tested the hypothesis that determined dental papilla mesenchyme requires epithelial-derived instructions to differentiate into functional odontoblast cells using a serumless, chemically-defined medium. Theiler stage 25 C57BL/6 or Swiss Webster cap stage mandibular first molar tooth organs or trypsin-dissociated, homotypic epithelial-mesenchymal tissue recombinants resulted in the differentiation of odontoblasts within 3 days. Epithelial differentiation into functional ameloblasts was observed within 7 days. Trypsin-dissociated and isolated mesenchyme did not differentiate into odontoblasts under these experimental conditions. Heterotypic recombinants between quail Hamburger-Hamilton stages 22–26 mandibular epithelium and Theiler stage 25 dental papilla mesenchyme routinely resulted in odontoblast differentiation within 3 days in vitro. Odontoblast differentiation and the production of dentine extracellular matrix continued throughout the 10 days in organ culture. Ultrastructural observations of the interface between quail and mouse tissues indicated the reconstitution of the basal lamina as well as the maintenance of an intact basal lamina during 10 days in vitro. Quail epithelial cells did not differentiate into ameloblasts and no enamel extracellular matrix was observed. These results show that quail mandibular epithelium can provide the required developmental instructions for odontoblast differentiation in the absence of serum or other exogenous humoral factors in a chemically-defined medium. They also suggest the importance of reciprocal epithelial-mesenchymal interactions during epidermal organogenesis.  相似文献   
66.
In the light of existing work on tbe behavioral physiology ofthis anemone, the structure of parts of the neuroimiscular systemhas been examined in detail. In the sphincter region, the morphologicalbasis for rapid through-conduction and motor innervation isa network of bipolar nerve cells, which is connected to thesimilar retractor nerve-nets of mesenteries. Sphincter musclefibers are arranged at the periphery of tubes, which form ameshwork within the mesogloea. Bipolar nerve cells appear torun in these tubes. Neurites also reach the sphincter from theendodermal nerve-net by penetrating the mesogloea directly.The nerve-net over the circular muscle is richer than in otherparts of the column, but shows similar features. It includessmall multipolar cells of unknown function. Coordination between different parts of the anemone is discussedin terms of possible pathways for the transmission of excitation.For example, bundles of retractor and parietobasilar musclefibers continue from both surfaces of mesenteries into the mesogloeaof the pedal disk, suggesting a possible route for neuritespassing to or from the ectoderm. If confirmed, the existenceof this route could throw light on a number of sequences ofbehavior.  相似文献   
67.
68.
69.
For 150 years O. anomala has been the only known species of Oligoneuria, the type genus of the Oligoneuriidae (Ephemeroptera). However, two species have been recently described and Oligoneuria has been proposed as a senior synonym of the genus Oligoneurioides. In the present paper, based on material from the Amazon and Brazilian Atlantic Forest, three new species are described, including information on all life stages. Given these new species, as well as the lack of cladistic support for the proposed synonymy between Oligoneuria and Oligoneurioides, a phylogenetic analysis was performed in order to address the relationships between all species and to test the status of Oligoneurioides. Our results show that the status of the genus is uncertain, mainly due to the lack of knowledge of the type species of O. anomala, known exclusively from a female subimago. Taking into account phylogenetic as well as taxonomic arguments, we propose that the genus Oligoneuria should be divided into three subgenera: Oligoneuria s.s., for O. anomala; Oligoneuria (Yawari) new subgenus, for Oligoneuria truncata sp.n. ; and Oligoneuria (Oligoneurioides) for the remaining five species, including O. amandae sp.n. and O. mitra sp.n. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:A2AEE4B7‐FEA8‐4067‐8F3B‐666095EDB997 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号