首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   11篇
  2018年   1篇
  2015年   1篇
  2013年   5篇
  2012年   7篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
91.
Nucleoplasmic RNA polymerase II (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) from calfthymus is phosphorylated by homologous cyclic AMP-independent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37). Polyacrylamide gel electrophoresis of the 32P-labeled RNA polymerase II under non-denaturing conditions revealed that both forms of the enzyme were phosphorylated. Polyacrylamide gel electrophoresis of the 32P-labeled RNA polymerase II under denaturing conditions showed that the 25 000 dalton subunit was the phosphate acceptor subunit. Partial acid hydrolysis of the 32P-labeled RNA polymerase II followed by ion-exchange chromatography revealed serine and threonine as the [32P]phosphate acceptor amino acids. Phosphorylation of the RNA polymerase II was accompanied by a stimulation of enzymatic activity and was dependent upon the presence of ATP.  相似文献   
92.
A phosphoprotein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) from calf thymus nuclei was purified by DEAE-cellulose chromatography, hydroxyapatite, and Sepharose 6B gel filtration. The enzyme is a cyclic AMP-independent protein kinase by the following criteria: (a) the protein kinase did not bind cyclic AMP; (b) no inhibition of activity was obtained with the heat-stable protein kinase inhibitor from rabbit skeletal muscle; (c) the regulatory subunit of cyclic AMP-dependent protein kinase had no effect on activity; and (d) no inhibition was obtained with antibody to cyclic AMP-dependent protein kinase. The nuclear cyclic AMP-independent protein kinase readily phosphorylated protamine on serine and to a lesser extent on threonine. Homologous nucleoplasmic RNA polymerase (EC 2.7.7.6) is a better substrate than arginine-rich histone, phosvitin or casein. Physical characteristics of the enzyme are described.  相似文献   
93.
Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, 2003). In the present study, these animals (TG) are evaluated for the effect of inhibition of sarcoplasmic reticulum (SR) CaMKII activity on the contractile characteristics and Ca2+ cycling of myocytes. Analysis of isolated work-performing hearts demonstrated moderate decreases in the maximal rates of contraction and relaxation (+/-dP/dt) in TG mice. The response of the TG hearts to increases in load is reduced. The TG hearts respond to isoproterenol (Iso) in a dose-dependent manner; the contractile properties were reduced in parallel to wild-type hearts. Assessment of isolated cardiomyocytes from TG mice revealed 40-47% decrease in the maximal rates of myocyte shortening and relengthening under both basal and Iso-stimulated conditions. Although twitch Ca2+ transient amplitudes were not significantly altered, the rate of twitch intracellular Ca2+ concentration decline was reduced by approximately 47% in TG myocytes, indicating decreased SR Ca2+ uptake function. Caffeine-induced Ca2+ transients indicated unaltered SR Ca2+ content and Na+/Ca2+ exchange function. Phosphorylation assays revealed an approximately 30% decrease in the phosphorylation of ryanodine receptor Ser2809. Iso stimulation increased the phosphorylation of both phospholamban Ser16 and the ryanodine receptor Ser2809 but not phospholamban Thr17 in TG mice. This study demonstrates that inhibition of SR CaMKII activity at the LSR results in alterations in cardiac contractility and Ca2+ handling in TG hearts.  相似文献   
94.
Dilated cardiomyopathy and end-stage heart failure result in multiple defects in cardiac excitation-contraction coupling. Via complementation of a genetically based mouse model of dilated cardiomyopathy, we now provide evidence that progressive chamber dilation and heart failure are dependent on a Ca2+ cycling defect in the cardiac sarcoplasmic reticulum. The ablation of a muscle-specific sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) inhibitor, phospholamban, rescued the spectrum of phenotypes that resemble human heart failure. Inhibition of phospholamban-SERCA2a interaction via in vivo expression of a phospholamban point mutant dominantly activated the contractility of ventricular muscle cells. Thus, interfering with phospholamban-SERCA2a interaction may provide a novel therapeutic approach for preventing the progression of dilated cardiomyopathy.  相似文献   
95.
Phosphorylation of phospholamban (PLB) at Ser16 (protein kinase A site) and at Thr17 [Ca2+/calmodulin kinase II (CaMKII) site] increases sarcoplasmic reticulum Ca2+ uptake and myocardial contractility and relaxation. In perfused rat hearts submitted to ischemia-reperfusion, we previously showed an ischemia-induced Ser16 phosphorylation that was dependent on beta-adrenergic stimulation and an ischemia and reperfusion-induced Thr17 phosphorylation that was dependent on Ca2+ influx. To elucidate the relationship between these two PLB phosphorylation sites and postischemic mechanical recovery, rat hearts were submitted to ischemia-reperfusion in the absence and presence of the CaMKII inhibitor KN-93 (1 microM) or the beta-adrenergic blocker dl-propranolol (1 microM). KN-93 diminished the reperfusion-induced Thr17 phosphorylation and depressed the recovery of contraction and relaxation after ischemia. dl-Propranolol decreased the ischemia-induced Ser16 phosphorylation but failed to modify the contractile recovery. To obtain further insights into the functional role of the two PLB phosphorylation sites in postischemic mechanical recovery, transgenic mice expressing wild-type PLB (PLB-WT) or PLB mutants in which either Thr17 or Ser16 were replaced by Ala (PLB-T17A and PLB-S16A, respectively) into the PLB-null background were used. Both PLB mutants showed a lower contractile recovery than PLB-WT. However, this recovery was significantly impaired all along reperfusion in PLB-T17A, whereas it was depressed only at the beginning of reperfusion in PLB-S16A. Moreover, the recovery of relaxation was delayed in PLB-T17A, whereas it did not change in PLB-S16A, compared with PLB-WT. These findings indicate that, although both PLB phosphorylation sites are involved in the mechanical recovery after ischemia, Thr17 appears to play a major role.  相似文献   
96.
97.
Phospholamban is a regulator of the Ca(2+) affinity of the cardiac sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) and of cardiac contractility. In vitro expression studies have shown that several mutant phospholamban monomers are superinhibitory, suggesting that monomeric phospholamban is the active species. However, a phospholamban Asn(27) --> Ala (N27A) mutant, which maintained a normal pentamer to monomer ratio, was shown to act as a superinhibitor of SERCA2a Ca(2+) affinity. To determine whether the pentameric N27A mutant is superinhibitory in vivo, transgenic mice with cardiac-specific overexpression of mutant phospholamban were generated. Quantitative immunoblotting revealed a 61 +/- 6% increase in total phospholamban in mutant hearts, with 90% of the overexpressed protein being pentameric. The EC(50) value for Ca(2+) dependence of Ca(2+) uptake was 0.69 +/- 0.07 microM in mutant hearts, compared with 0.29 +/- 0.02 microM in wild-type hearts or 0. 43 +/- 0.03 microM in hearts overexpressing wild-type PLB by 2-fold. Myocytes from phospholamban N27A mutant hearts also exhibited more depressed contractile parameters than wild-type phospholamban overexpressing cells. The shortening fraction was 52%, rates of shortening and relengthening were 46% and 38% respectively, and time for 80% decay of the Ca(2+) signal was 146%, compared with wild-types (100%). Langendorff-perfused mutant hearts also demonstrated depressed contractile parameters. Furthermore, in vivo echocardiography showed a depression in the ratio of early to late diastolic transmitral velocity and a 79% prolongation of the isovolumic relaxation time. Isoproterenol stimulation did not fully relieve the depressed contractile parameters at the cellular, organ, and intact animal levels. Thus, pentameric phospholamban N27A mutant can act as a superinhibitor of the affinity of SERCA2a for Ca(2+) and of cardiac contractility in vivo.  相似文献   
98.
Mechanical and relaxation restitution represent the restoration of contractile force and relaxation, respectively, in premature beats having progressively longer extrasystolic intervals (ESI); these phenomena are related to intracellular activator Ca(2+) by poorly defined mechanisms. We tested the hypothesis that the level of phospholamban [which modulates the affinity of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase for Ca(2+), and thus the SR Ca(2+) load] may be an important determinant of both mechanical and relaxation restitution. Five mice with ablation of the phospholamban (PLB) gene (PLBKO), eight isogenic wild-type controls (129SvJ), eleven mice with PLB overexpression (PLBOE), and nine isogenic wild-type (FVB/N) controls were anesthetized and instrumented with a 1.4-Fr Millar catheter in the left ventricle and a 1-Fr pacemaker in the right atrium. At a cycle length of 200 ms, extrastimuli with increasing ESI were introduced, and the peak rates of left ventricular isovolumic contraction (+/-dP/dt(max)) were normalized and fit to monoexponential equations. In a subset, the protocols were repeated after ryanodine (4 ng/g) was administered to deplete SR Ca(2+) stores. The time constant of mechanical restitution in PLBKO was significantly shorter [6.3 +/- 1.2 (SE) vs. 47.7 +/- 7.6 ms] and began earlier (50 +/- 10 vs. 70 +/- 19 ms) than in 129SvJ. In contrast, the time constant of mechnical restitution was significantly longer (80.3 +/- 7.6 vs. 54.1 +/- 9.2 ms) in PLBOE than in FVB/N. The time constant of relaxation restitution was less in PLBKO than in 129SvJ (26.2 +/- 9.9 vs. 44.6 +/- 3.3, P < 0.05) but was similar in PLBOE and FVB/N (21.1 +/- 6.3 vs. 20.5 +/- 5.7 ms). Intravenous ryanodine decreased significantly the time constants of mechanical restitution in PLBOE, 129SvJ, and FVB/N but was lethal in PLBKO. In contrast, ryanodine increased the time constant of relaxation restitution. Thus 1) the phospholamban level is a critical determinant of mechanical restitution and (to a lesser extent) relaxation restitution in these transgenic models, and 2) ryanodine differentially affects mechanical and relaxation restitution. Furthermore, our data suggest a dissociation of processes within the SR that govern contraction and relaxation.  相似文献   
99.
Heat shock protein 20 (Hsp20) has been shown to be a critical regulator of cardiomyocyte survival upon cardiac stress. In this study, we investigated the functional significance of a novel human Hsp20 mutation (S10F) in peripartum cardiomyopathy. Previous findings showed that cardiac‐specific overexpression of this mutant were associated with reduced autophagy, left ventricular dysfunction and early death in male mice. However, this study indicates that females have normal function with no alterations in autophagy but died within a week after 1‐4 pregnancies. Further examination of mutant females revealed left ventricular chamber dilation and hypertrophic remodelling. Echocardiography demonstrated increases in left ventricular end‐systolic volume and left ventricular end‐diastolic volume, while ejection fraction and fractional shortening were depressed following pregnancy. Subsequent studies revealed that cardiomyocyte apoptosis was elevated in mutant female hearts after the third delivery, associated with decreases in the levels of Bcl‐2/Bax and Akt phosphorylation. These results indicate that the human S10F mutant is associated with dysregulation of cell survival signalling, accelerated heart failure and early death post‐partum.  相似文献   
100.
Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号