全文获取类型
收费全文 | 97篇 |
免费 | 11篇 |
专业分类
108篇 |
出版年
2018年 | 1篇 |
2015年 | 1篇 |
2013年 | 5篇 |
2012年 | 7篇 |
2011年 | 1篇 |
2010年 | 1篇 |
2009年 | 4篇 |
2008年 | 2篇 |
2007年 | 5篇 |
2006年 | 3篇 |
2005年 | 1篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2002年 | 1篇 |
2001年 | 4篇 |
2000年 | 9篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 6篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1983年 | 5篇 |
1982年 | 1篇 |
1981年 | 3篇 |
1980年 | 3篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有108条查询结果,搜索用时 15 毫秒
101.
Arvanitis DA Vafiadaki E Fan GC Mitton BA Gregory KN Del Monte F Kontrogianni-Konstantopoulos A Sanoudou D Kranias EG 《American journal of physiology. Heart and circulatory physiology》2007,293(3):H1581-H1589
Depressed cardiac Ca cycling by the sarcoplasmic reticulum (SR) has been associated with attenuated contractility, which can progress to heart failure. The histidine-rich Ca-binding protein (HRC) is an SR component that binds to triadin and may affect Ca release through the ryanodine receptor. HRC overexpression in transgenic mouse hearts was associated with decreased rates of SR Ca uptake and delayed relaxation, which progressed to hypertrophy with aging. The present study shows that HRC may mediate part of its regulatory effects by binding directly to sarco(endo)plasmic reticulum Ca-ATPase type 2 (SERCA2) in cardiac muscle, which is confirmed by coimmunostaining observed under confocal microscopy. This interaction involves the histidine- and glutamic acid-rich domain of HRC (320-460 aa) and the part of the NH(2)-terminal cation transporter domain of SERCA2 (74-90 aa) that projects into the SR lumen. The SERCA2-binding domain is upstream from the triadin-binding region in human HRC (609-699 aa). Specific binding between HRC and SERCA was verified by coimmunoprecipitation and pull-down assays using human and mouse cardiac homogenates and by blot overlays using glutathione S-transferase and maltose-binding protein recombinant proteins. Importantly, increases in Ca concentration were associated with a significant reduction of HRC binding to SERCA2, whereas they had opposite effects on the HRC-triadin interaction in cardiac homogenates. Collectively, our data suggest that HRC may play a key role in the regulation of SR Ca cycling through its direct interactions with SERCA2 and triadin, mediating a fine cross talk between SR Ca uptake and release in the heart. 相似文献
102.
103.
S Boncompagni M Thomas JR Lopez PD Allen Q Yuan EG Kranias C Franzini-Armstrong CF Perez 《PloS one》2012,7(7):e39962
Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca(2+) imaging and Ca(2+) selective microelectrodes we found that changes in e-c coupling, SR Ca(2+)content and resting [Ca(2+)] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca(2+) regulation than Jct/CASQ association. 相似文献
104.
Gregory Kranias Lauren F. Watt Helen Carpenter Jeff Holst Russell Ludowyke Stefan Strack Alistair T.R. Sim Nicole M. Verrills 《Cellular signalling》2010,22(12):1882-1890
Asthma is characterised by antigen-mediated mast cell degranulation resulting in secretion of inflammatory mediators. Protein phosphatase 2A (PP2A) is a serine/threonine protein phosphatase composed of a catalytic (PP2A-C) subunit together with a core scaffold (PP2A-A) subunit and a variable, regulatory (PP2A-B) subunit. Previous studies utilising pharmacological inhibition of protein phosphatases have suggested a positive regulatory role for PP2A in mast cell degranulation. In support of this we find that a high okadaic acid concentration (1 μM) inhibits mast cell degranulation. Strikingly, we now show that a low concentration of okadaic acid (0.1 μM) has the opposite effect, resulting in enhanced degranulation. Selective downregulation of the PP2A-Cα subunit by short hairpin RNA also enhanced degranulation of RBL-2H3 mast cells, suggesting that the primary role of PP2A is to negatively regulate degranulation. PP2A-B subunits are responsible for substrate specificity, and carboxymethylation of the PP2A-C subunit alters B subunit binding. We show here that carboxymethylation of PP2A-C is dynamically altered during degranulation and inhibition of methylation decreases degranulation. Moreover downregulation of the PP2A-Bα subunit resulted in decreased MK2 phosphorylation and degranulation, whilst downregulation of the PP2A-B′δ subunit enhanced p38 MAPK phosphorylation and degranulation. Taken together these data show that PP2A is both a positive and negative regulator of mast cell degranulation, and this differential role is regulated by carboxymethylation and specific PP2A-B subunit binding. 相似文献
105.
We have isolated two proteolipids from rabbit skeletal muscle sarcoplasmic reticulum by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. One, PL-II, is identical to the proteolipid previously obtained by others using organic solvent extraction. The other, PL-I, has an amino acid composition very similar to those of proteolipids we previously isolated from canine cardiac SR and lamb kidney (Na,K)-ATPase. 相似文献
106.
The planktonic glaucothoe of the Indo-West Pacific hermit crab Paguropsis typica Henderson has an aberrant anthozoan polyp, identified as a nynanthean actinian, attached to the underside of its thorax. The morphology of the anemone is described. The scapus is dumb-bell shaped and exhibits a slit-like mouth opening oriented transverse to the animal's siphonoglyphal plane. The gonads are very well developed, whereas tentacle-like structures or retractor muscles of certain septa are reduced. In the adult stage, Paguropsis typica is associated with the zoanthidean Epizoanthus paguropsides . It is assumed that the actinian is lost at the ecdysis leading to the first "hermit stage" and that P. typica might possibly seize a free Epizoanthus colony and adapt it to its body. 相似文献
107.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium X calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium X calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium X calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+-40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium X calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+-40Ca2+ exchange. 相似文献
108.
Sanja Perovic Jürgen Seack Vera Gamulin Werner EG Müller Heinz C Schröder 《BMC cell biology》2001,2(1):7-9