首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   44篇
  国内免费   1篇
  682篇
  2022年   8篇
  2021年   6篇
  2020年   6篇
  2019年   10篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   7篇
  2014年   19篇
  2013年   25篇
  2012年   30篇
  2011年   31篇
  2010年   23篇
  2009年   18篇
  2008年   11篇
  2007年   20篇
  2006年   17篇
  2005年   10篇
  2004年   10篇
  2003年   18篇
  2002年   14篇
  2001年   15篇
  2000年   11篇
  1999年   17篇
  1998年   14篇
  1997年   9篇
  1995年   6篇
  1993年   12篇
  1992年   8篇
  1991年   6篇
  1990年   12篇
  1988年   10篇
  1987年   15篇
  1986年   8篇
  1983年   9篇
  1982年   9篇
  1981年   9篇
  1979年   15篇
  1978年   8篇
  1977年   7篇
  1976年   9篇
  1975年   10篇
  1974年   11篇
  1973年   13篇
  1972年   9篇
  1971年   14篇
  1970年   15篇
  1969年   10篇
  1967年   9篇
  1966年   6篇
排序方式: 共有682条查询结果,搜索用时 15 毫秒
121.
7-(2'-Hydroxy-3'-chloroprenyloxy)-4,8-dimethoxyfuroquinoline (1) and 6-(2'-hydroxy-3'-chloroprenyloxy)-4,7-dimethoxyfuroquinoline (2), together with ten known compounds, have been isolated from the aerial parts of Ertela (Monnieria) trifolia (L.) Kuntze. All the isolates were tested for antiproliferative activity against the A2780 human ovarian cancer cell line.  相似文献   
122.
Hypoxia promotes Na,K-ATPase endocytosis via protein kinase Cζ (PKCζ)-mediated phosphorylation of the Na,K-ATPase α subunit. Here, we report that hypoxia leads to the phosphorylation of 5′-AMP-activated protein kinase (AMPK) at Thr172 in rat alveolar epithelial cells. The overexpression of a dominant-negative AMPK α subunit (AMPK-DN) construct prevented the hypoxia-induced endocytosis of Na,K-ATPase. The overexpression of the reactive oxygen species (ROS) scavenger catalase prevented hypoxia-induced AMPK activation. Moreover, hypoxia failed to activate AMPK in mitochondrion-deficient ρ0-A549 cells, suggesting that mitochondrial ROS play an essential role in hypoxia-induced AMPK activation. Hypoxia-induced PKCζ translocation to the plasma membrane and phosphorylation at Thr410 were prevented by the pharmacological inhibition of AMPK or by the overexpression of the AMPK-DN construct. We found that AMPK α phosphorylates PKCζ on residue Thr410 within the PKCζ activation loop. Importantly, the activation of AMPK α was necessary for hypoxia-induced AMPK-PKCζ binding in alveolar epithelial cells. The overexpression of T410A mutant PKCζ prevented hypoxia-induced Na,K-ATPase endocytosis, confirming that PKCζ Thr410 phosphorylation is essential for this process. PKCζ activation by AMPK is isoform specific, as small interfering RNA targeting the α1 but not the α2 catalytic subunit prevented PKCζ activation. Accordingly, we provide the first evidence that hypoxia-generated mitochondrial ROS lead to the activation of the AMPK α1 isoform, which binds and directly phosphorylates PKCζ at Thr410, thereby promoting Na,K-ATPase endocytosis.When exposed to low oxygen levels (hypoxia), cells develop adaptative strategies to maintain adequate levels of ATP (21). These strategies include increasing the efficiency of energy-producing pathways, mostly through anaerobic glycolysis, while decreasing energy-consuming processes such as Na,K-ATPase activity (30). Alveolar hypoxia occurs in many respiratory disorders, and it has been shown to decrease epithelial active Na+ transport, leading to impaired fluid reabsorption (37, 41, 42). Active Na+ transport and, thus, alveolar fluid reabsortion are effected mostly via apical sodium channels and the basolateral Na,K-ATPase (32, 38, 42). We have reported previously that hypoxia inhibits Na,K-ATPase activity by promoting its endocytosis from the plasma membrane by a mechanism that requires the generation of mitochondrial reactive oxygen species (ROS) and the phosphorylation of the Na,K-ATPase α subunit at Ser18 by protein kinase Cζ (PKCζ) (8, 9).The 5′-AMP-activated protein kinase (AMPK) is a heterotrimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits. Both isoforms of the AMPK catalytic subunit (α1 and α2) form complexes with noncatalytic subunits. The α1 subunit is ubiquitously expressed, whereas the α2 subunit isoform is expressed predominantly in tissues like the liver, heart, and skeletal muscle (36). The α1 and α2 subunit isoforms have ∼90% homology in their N-terminal catalytic domains and ∼60% homology in their C-terminal domains (36), suggesting that they may have distinct downstream targets (31). AMPK activation requires phosphorylation at Thr172 in the activation loop of the α subunit by upstream kinases (12, 19). Findings from recent studies suggest that AMPK is an important signaling intermediary in coupling ion transport and metabolism (15). Indeed, it has been reported that the pharmacological activation of AMPK inhibits amiloride- and ouabain-sensitive epithelial Na+ transport (15). Moreover, the activities of the epithelial Na+ channel (ENaC) (2, 17), the Na,K-ATPase (40), and the cystic fibrosis transmembrane conductance regulator (17) have been shown to be inhibited by AMPK. Here, we provide evidence that hypoxia, via mitochondrial ROS, leads to AMPK activation and that AMPK binds to and directly phosphorylates PKCζ in an isoform-specific manner, thus promoting Na,K-ATPase endocytosis in alveolar epithelial cells (AEC).  相似文献   
123.
The selection of bedding sites is important for the ecology of ruminants, but has mainly been described for temperate species. Here we assessed the bed site selection of two Southeast Asian tropical deer, red muntjac and sambar, in Khao Yai National Park, Thailand. We surveyed transects weekly for 10 weeks each in 2003 and 2004 to locate bed sites, and compared the slope, aspect, and forest canopy cover of bed site locations between the two species and with available habitat. As with most temperate deer, muntjac and sambar both avoided sites with low levels of cover for their bed site locations; this could be for concealment or thermoregulation. Sambar also selected flatter sites than would be expected by the availability of topographic slopes; this could be to reduce the energy associated with getting to and from bed sites, or to increase long-range visibility from sites. Muntjac and sambar differed in their choice of aspects for bed sites; muntjac disproportionately chose west-facing areas, while sambar chose east-facing locations. This could represent a strategy by which one species avoids the other, or else differential resource requirements between the two species.  相似文献   
124.
Understanding the population-level impacts of climate change is critical for effectively managing ecosystems. Predators are important components of many systems because they provide top−down control of community structure. Ecological theory suggests that these species could be particularly susceptible to climate change because they generally occur at low densities and have resource-limited populations. Yet, our understanding of climate-change impacts on predators is hindered by the difficulty in assessing complex, nonlinear dynamics over the large spatial scales necessary to depict a species’ general response to abiotic forcing. Here we use fur-return data to characterize population dynamics of a snow-adapted carnivore, the wolverine, across most of its North American range. Using novel modeling techniques, we simultaneously measured the impact of winter snowpack on wolverine dynamics across critical thresholds in snowpack depth and two domains of population growth. Winter snowpack declined from 1970 to 2004 in nearly the entire region studied, concordant with increases in Northern Hemisphere temperature anomalies. Fur returns have declined in many areas; our models show that snowpack has strong, nonlinear effects on wolverine population dynamics. Importantly, wolverine harvests dropped the fastest in areas where snowpack declined most rapidly and also where snowpack had the greatest effect on population dynamics. Moreover, declining snow cover appears to drive trends in wolverine population synchrony, with important implications for overall persistence. These results illustrate the vulnerability and complex responses of predator populations to climate change. We also suggest that declining snowpack may be an important and hitherto little-analyzed mechanism through which climate change alters high-latitude ecosystems.  相似文献   
125.
Polymicrobial bronchopulmonary infections in cystic fibrosis (CF) cause progressive lung damage and death. Although the arrival of Pseudomonas aeruginosa often heralds a more rapid rate of pulmonary decline, there is significant inter‐individual variation in the rate of decline, the causes of which remain poorly understood. By coupling culture‐independent methods with ecological analyses, we discovered correlations between bacterial community profiles and clinical disease markers in respiratory tracts of 45 children with CF. Bacterial community complexity was inversely correlated with patient age, presence of P. aeruginosa and antibiotic exposure, and was related to CF genotype. Strikingly, bacterial communities lacking P. aeruginosa were much more similar to each other than were those containing P. aeruginosa, regardless of antibiotic exposure. This suggests that community composition might be a better predictor of disease progression than the presence of P. aeruginosa alone and deserves further study.  相似文献   
126.
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC‐AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water‐balance‐related parameters. Temperature‐dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon ‘dieback’ results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long‐term investments are required.  相似文献   
127.

Background

Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring.

Methodology/Principal Findings

Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies.

Conclusions/Significance

This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.  相似文献   
128.
Universal taxonomic frameworks have been critical tools to structure the fields of botany, zoology, mycology, and bacteriology as well as their large research communities. Animals, plants, and fungi have relatively solid, stable morpho‐taxonomies built over the last three centuries, while bacteria have been classified for the last three decades under a coherent molecular taxonomic framework. By contrast, no such common language exists for microbial eukaryotes, even though environmental ‘‐omics’ surveys suggest that protists make up most of the organismal and genetic complexity of our planet's ecosystems! With the current deluge of eukaryotic meta‐omics data, we urgently need to build up a universal eukaryotic taxonomy bridging the protist ‐omics age to the fragile, centuries‐old body of classical knowledge that has effectively linked protist taxa to morphological, physiological, and ecological information. UniEuk is an open, inclusive, community‐based and expert‐driven international initiative to build a flexible, adaptive universal taxonomic framework for eukaryotes. It unites three complementary modules, EukRef, EukBank, and EukMap, which use phylogenetic markers, environmental metabarcoding surveys, and expert knowledge to inform the taxonomic framework. The UniEuk taxonomy is directly implemented in the European Nucleotide Archive at EMBL‐EBI, ensuring its broad use and long‐term preservation as a reference taxonomy for eukaryotes.  相似文献   
129.
In a continuing study of our clinical candidate 5 VN/124-1 (TOK-001) and analogs as potential agents for prostate cancer therapy, putative metabolites (10, 15 and 18) of compound 5 were rationally designed and synthesized. However, none of these agents were as efficacious as 5 in several in vitro studies. Using western blot analysis, we have generated a preliminary structure–activity relationship (SAR) of 5 and related analogs as androgen receptor ablative agents (ARAAs). In vivo using the androgen-dependent LAPC-4 prostate cancer xenograft model, we demonstrated for the first time that 5 is more efficacious than the 17-lyase inhibitor 3 (abiraterone)/4 (abiraterone acetate) that is currently in phase III clinical trials. In our desire to optimize the potency of 5, compounds 6 (3ξ-fluoro-) and 9 (3β-sulfamate-) designed to increase the stability and oral bioavailability of 5, respectively were evaluated in vivo. We showed, that on equimolar basis, compound 6 was ∼2-fold more efficacious versus LAPC-4 xenografts than 5, but the toxicity observed with 6 is of concern. These studies further demonstrate the efficacy of 5 in a clinically relevant prostate cancer model and justify its current clinical development as a potential treatment of prostate cancer.  相似文献   
130.
Abstract: Morphological and reproductive features and cell wall ultrastructure and biochemistry of Proterozoic acritarchs are used to determine their affinity to modern algae. The first appearance datum of these microbiota is traced to infer a minimum age of the divergence of the algal classes to which they may belong. The chronological appearance of microfossils that represent phycoma‐like and zygotic cysts and vegetative cells and/or aplanospores, respectively, interpreted as prasinophyceaen and chlorophyceaen microalgae is related to the Viridiplantae phylogeny. An inferred minimum age of the Chlorophyte origin is before c. 1800 Ma, the Prasinophyceae at c. 1650 Ma and the Chlorophyceae at c. 1450 Ma. These divergence times differ from molecular clock estimates, and the palaeontological evidence suggests that they are older.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号