首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   37篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   18篇
  2020年   14篇
  2019年   17篇
  2018年   32篇
  2017年   18篇
  2016年   23篇
  2015年   30篇
  2014年   35篇
  2013年   43篇
  2012年   44篇
  2011年   33篇
  2010年   27篇
  2009年   24篇
  2008年   30篇
  2007年   18篇
  2006年   19篇
  2005年   15篇
  2004年   15篇
  2003年   14篇
  2002年   9篇
  2001年   10篇
  2000年   9篇
  1999年   10篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有546条查询结果,搜索用时 328 毫秒
431.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. Despite the advances made in this technique, revisions of erroneously established structures for natural products are still commonly published in the literature. In this context, the prediction of chemical shifts through ab initio and density functional theory (DFT) calculations has become a very powerful tool for assisting with the structural determination of complex organic molecules. In this work, we present the development of a protocol for 13C chemical shift calculations of terpenes, a class of natural products that are widely distributed among plant species and are very important due to their biological and pharmacological activities. This protocol consists of GIAO-DFT calculations of chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of this class of natural products. The application of this protocol to a set of five terpenes yielded accurate calculated chemical shifts, showing that this is a very attractive tool for the calculation of complex organic structures such as terpenes.  相似文献   
432.
The analysis of exhaled air has several advantages since it is a noninvasive method applicable to a large number of toxic agents, in addition to being a simpler matrix than those of other biological samples such as urine and blood. However, it presents some challenges, such as the necessity of a more sensitive sampling procedure, since the chemical substances eliminated through exhaled air are unchanged in form, not being metabolized, and exhaled compounds are present at extremely low concentrations, i.e. in the nanomolar range. To improve the sensitivity and precision of measurement of the concentration of these substances in exhaled air, the sample usually has to be concentrated before assay by gas chromatography. To this end, the use of the solid-phase microextraction (SPME) technique has been proposed as an efficient sampling method. This paper presents a revision of breath analysis as a biomarker for occupational and environmental exposure to chemicals. The sampling methods and the potential use of SPME for determining chemical substances in exhaled air are discussed.  相似文献   
433.
434.
Passiflora L. has more than 575 species distributed especially in the Neotropics. The chromosome number variation in the genus is highly congruent with its main subgenera, but its basic chromosome number (x) and the underlying events responsible for this variation have remained controversial. Here, we provide a robust and well-resolved time-calibrated phylogeny that includes 102 taxa, and by means of phylogenetic comparative methods (PCM) we tested the relative importance of polyploidy and dysploidy events to Passiflora karyotype evolution and diversification. Passiflora arose 42.9 Mya, with subgenus diversification at the end of the Palaeogene (Eocene-Oligocene). The basic chromosome number of the genus is proposed as x?=?6, and a strong recent diversification found in the Passiflora subgenus (Miocene) correlated to genome size increase and a chromosome change from n?=?6 to n?=?9 by ascending dysploidy. Polyploidy, conversely, appeared restricted to few lineages, such as Astrophea and Deidamioides subgenera, and did not lead to diversification increases. Our findings suggest that ascending dysploidy provided a great advantage for generating long-term persistent lineages and promoting species diversification. Thus, chromosome numbers/genome size changes may have contributed to morphological/ecological traits that explain the pattern of diversification observed in the genus Passiflora.  相似文献   
435.
The purpose of this study was to describe, interpret and compare the EMG activation patterns of ankle muscles – tibialis anterior (TA), peroneus longus (PL) and gastrocnemius lateralis (GL) – in volleyball players with and without ankle functional instability (FI) during landing after the blocking movement. Twenty-one players with FI (IG) and 19 controls (CG) were studied. The cycle of movement analyzed was the time period between 200 ms before and 200 ms after the time of impact determined by ground reaction forces. The variables were analyzed for two different phases: pre-landing (200 ms before impact) and post-landing (200 ms after impact). The RMS values and the timing of onset activity were calculated for the three studied muscles, in both periods and for both groups. The co-activation index for TA and PL, TA and GL were also calculated. Individuals with FI presented a lower RMS value pre-landing for PL (CG = 43.0 ± 22.0; IG = 26.2 ± 8.4, p < 0.05) and higher RMS value post-landing (CG = 47.5 ± 13.3; IG = 55.8 ± 21.6, p < 0.10). Besides that, in control group PL and GL activated first and simultaneously, and TA presented a later activation, while in subjects with FI all the three muscles activated simultaneously. There were no significant differences between groups for co-activation index. Thus, the rate of contraction between agonist and antagonist muscles is similar for subjects with and without FI but the activation individually was different. Volleyball players with functional instability of the ankle showed altered patterns of the muscles that play an important role in the stabilization of the foot–ankle complex during the performance of the blocking movement, to the detriment of the ligament complex, and this fact could explain the usual complaints in these subjects.  相似文献   
436.
The activity of the Bacillus sphaericus binary (Bin) toxin on Culex quinquefasciatus larvae depends on its specific binding to the Cqm1 receptor, a midgut membrane-bound α-glucosidase. A 19-nucleotide deletion in the cqm1 gene (cqm1REC) mediates high-level resistance to Bin toxin. Here, resistance in nontreated and B. sphaericus-treated field populations of C. quinquefasciatus was assessed through bioassays as well as a specific PCR assay designed to detect the cqm1REC allele in individual larvae. Resistance ratios at 90% lethal concentration, gathered through bioassays, were close to 1 and indicate that the selected populations had similar levels of susceptibility to B. sphaericus, comparable to that of a laboratory colony. A diagnostic PCR assay detected the cqm1REC allele in all populations investigated, and its frequency in two nontreated areas was 0.006 and 0.003, while the frequency in the B. sphaericus-treated population was significantly higher. Values of 0.053 and 0.055 were detected for two distinct sets of samples, and homozygote resistant larvae were found. Evaluation of Cqm1 expression in individual larvae through α-glucosidase assays corroborated the allelic frequency revealed by PCR. The data from this study indicate that the cqm1REC allele was present at a detectable frequency in nontreated populations, while the higher frequency in samples from the treated area is, perhaps, correlated with the exposure to B. sphaericus. This is the first report of the molecular detection of a biolarvicide resistance allele in mosquito populations, and it confirms that the PCR-based approach is suitable to track such alleles in target populations.  相似文献   
437.
The hypoosmotic swelling test (HOST) has proved to be a good tool for evaluating the membrane integrity of spermatozoa of various domestic animals including cattle, horses, and swine. However, the best approach for using this technique in rabbit semen has not been tested. The present study aimed to establish the best hypoosmotic solution (HS) for testing membrane integrity in fresh rabbit semen. Sucrose solutions with the following osmolarities were used: 50, 60, 75, 100, 125 and 150mOsm/L. Semen samples (n=30) were collected from five mature White New Zealand rabbits (six collections per rabbit) at 72h intervals. After macroscopic evaluation, 10microL of semen was immediately added to 2mL of each solution and incubated for 1h at 37 degrees C. Sequentially, 20microL of semen diluted in HS were evaluated with oil immersion using a phase-contrast microscope. A total of 200 spermatozoa were counted in at least five different fields, and sperm tails were classified as non-coiled, coiled, and strongly coiled. The respective percentages of spermatozoa with coiled tails (coiled plus strongly coiled) in the six solutions listed above were 54.8, 65.2, 54.3, 53.9, 38.9 and 29.4%. Percentage of strongly coiled spermatozoa was: 40.2, 51.0, 43.2, 41.5, 32.7 and 26.9 for the six solutions, respectively. According to total and strong coiling 60mOsm/L was superior to others treatments (P<0.05). Results suggest that the 60mOsm/L solution would be most desirable for use in HOST in fresh rabbit spermatozoa.  相似文献   
438.
Several studies about the phylogenetic relationships of the Scarabaeinae subfamily (Coleoptera: Scarabaeidae) have been performed, but some phylogenetic uncertainties persist including the relationship and monophyly of different tribes and some genera. The aim of this study was to characterize the mitogenome of Coprophanaeus ensifer in order to establish its position within the Scarabaeidae family and to contribute to the resolution of some phylogenetic uncertainties. The mitogenome was sequenced on the Illumina HiSeq 4000, assembled using the Mitobim software and annotated in MITOS WebServer. The phylogenetic trees were reconstructed by Bayesian inference. The C. ensifer mitogenome is a molecule of 14,964 bp that contains the number and organization of the genes similar to those of most Coleoptera species. Phylogenetic reconstruction suggests monophyly of the tribe Phanaeini and supports the hypothesis that Coprini is a sister group of Phanaeini. The results also revealed the position of the tribe Oniticellini which is grouped with Onthophagini and Onitini. The geographic distribution of these species that form the most ancestral clade suggests with Scarabaeinae originated in Africa. Keywords: Dung beetle, mitochondrial genome, phylogenomics  相似文献   
439.
The Inclusion and Selection of Medicinal Plants in Traditional Pharmacopoeias—Evidence in Support of the Diversification Hypothesis. An ethnobotanical study with phytochemical analyses was undertaken to examine the medicinal plants used by residents of a small rural community in northeastern Brazil. The present work tested two ideas that attempt to explain the inclusion and selection of medicinal plants in a given culture: the diversification hypothesis and the concept of versatility. The study involved 101 people and used semistructured interviews. A total of 61 plants were selected, including 25 exotic and 36 native species. Plants were classified according to their habit and analyzed for their phytochemical components. In addition, the relative importance (RI) of these plants was calculated, and a chemical diversity index (CDI) was created and applied to each of the species. Exotic and native plants were found to have significantly different occurrences of certain classes of compounds; this result supports the diversification hypothesis. It was therefore concluded that exotic plants are included in traditional pharmacopoeias to fill therapeutic vacancies that native plants cannot satisfy.  相似文献   
440.
Habitat destruction is the leading cause of species extinctions. However, there is typically a time‐lag between the reduction in habitat area and the eventual disappearance of the remnant populations. These “surviving but ultimately doomed” species represent an extinction debt. Calculating the magnitude of such future extinction events has been hampered by potentially inaccurate assumptions about the slope of species–area relationships, which are habitat‐ and taxon‐specific. We overcome this challenge by applying a method that uses the historical sequence of deforestation in the Azorean Islands, to calculate realistic and ecologically‐adjusted species–area relationships. The results reveal dramatic and hitherto unrecognized levels of extinction debt, as a result of the extensive destruction of the native forest:>95%, in<600 yr. Our estimations suggest that more than half of the extant forest arthropod species, which have evolved in and are dependent on the native forest, might eventually be driven to extinction. Data on species abundances from Graciosa Island, where only a very small patch of secondary native vegetation still exists, as well as the number of species that have not been found in the last 45 yr, despite the extensive sampling effort, offer support to the predictions made. We argue that immediate action to restore and expand native forest habitat is required to avert the loss of numerous endemic species in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号