首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181958篇
  免费   13008篇
  国内免费   1207篇
  2019年   148篇
  2017年   92篇
  2016年   121篇
  2015年   97篇
  2014年   135篇
  2013年   111篇
  2012年   20113篇
  2011年   22567篇
  2010年   3485篇
  2009年   1630篇
  2008年   17332篇
  2007年   17971篇
  2006年   16523篇
  2005年   15573篇
  2004年   14647篇
  2003年   13602篇
  2002年   11765篇
  2001年   9069篇
  2000年   11527篇
  1999年   4527篇
  1998年   590篇
  1997年   403篇
  1996年   271篇
  1995年   288篇
  1994年   275篇
  1993年   301篇
  1992年   287篇
  1991年   268篇
  1990年   247篇
  1989年   298篇
  1988年   303篇
  1987年   267篇
  1986年   232篇
  1985年   226篇
  1984年   176篇
  1983年   250篇
  1982年   145篇
  1981年   142篇
  1959年   479篇
  1958年   968篇
  1957年   919篇
  1956年   876篇
  1955年   869篇
  1954年   850篇
  1953年   760篇
  1952年   661篇
  1951年   657篇
  1950年   533篇
  1949年   212篇
  1948年   209篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Continuous production of L-phenylalanine by transamination   总被引:2,自引:0,他引:2  
L-Phenylalanine was produced continuously from L-as-partate and phenylpyruvate by transaminase from a newly screened Pseudomonas putida strain. The process was carried out with an isolated enzyme in homogeneous phase in an enzyme membrane reactor and with immobilized whole cells in a stirred tank reactor, respectively. Due to the difference in transport resistance, the productivity of the free enzyme in homogeneous phase (72 mmol/L h) was about 3 times higher than the productivity achieved using immobilized cells. However, a better stability of the biocatalyst was observed with immobilized cells.  相似文献   
112.
Absorption and magnetic circular dichroism (MCD) spectra are reported for chlorophyll (Chl) a and Chl b dissolved in nematic liquid crystal solvents. The spectra were measured with the dye molecules oriented uniaxially along the direction of. the magnetic field and measuring light beam. It is significant that under such conditions the MCD spectra recorded in the wavelength region of the Q and Soret bands of the chlorophyll are essentially unchanged with respect to rotation of the sample cell around this axis, even though there is almost complete orientation of the chlorophyll molecules by the liquid crystals. The MCD spectra of Chl a and b in the nematic liquid crystal solvents used in this study are surprisingly similar to the spectra obtained under isotropic conditions. These results illustrate an important technique with which to examine the optical spectra of dyes oriented in liquid crystal matrices in which the anisotropic effects can be reduced the negligible proportions by the application of a strong magnetic field parallel to the direction of the measuring light beam. The first deconvolution calculations are reported that describe the deconvolution of pairs of absorption and MCD spectra, in the Q and B band regions, for both Chl a and b. The spectral analysis to obtain quantitative estimates of transition energies was accomplished by carrying out detailed deconvolution calculations in which the both the absorption and MCD spectral envelopes were fitted with the same number of components; each pair of components had the same hand centres and bandwidth values. This procedure resulted in an assignment of each of the main transitions in the absorption spectra of both Chl a and b. Chl a is clearly monomeric, with Qy, Qx, By and Bx located at 671, 582, 439 and 431 nm, respectively. Analysis of the spectral data for Chl b located Qy, By and Bx, at 662, 476 and 464 nm, respectively.  相似文献   
113.
The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.  相似文献   
114.
The effects of Cd on poly(γ-glutamylcysteinyl)glycine [(γEC)nG] biosynthesis and formation of (γEC)nG:Cd complexes were measured in two cell lines of Datura innoxia with differing Cd tolerance. In addition, RNA synthesis, protein synthesis, and GSH concentrations were measured during a 48 hour exposure to Cd. Exposure to 250 micromolar CdCl2 was toxic to the sensitive line, whereas the tolerant line survived and grew in its presence. Cd-sensitive cells synthesized the same amount of (γEC)nG as tolerant cells during an initial 24 hour exposure to 250 micromolar CdCl2. However, rates of (γEC)nG:Cd complex formation differed between the two cell lines with the sensitive cells forming complexes later than tolerant cells. In addition, the complexes formed by sensitive cells were of lower molecular weight than those of tolerant cells and did not bind all of the cellular Cd. Pulse-labeling of cells with l-[35S]cysteine resulted in equivalent rates of incorporation into the (γEC)nG of both cell lines during the initial 24 hours after Cd. Rates of protein and RNA synthesis were similar for both cell lines during the initial 8 hours after Cd but thereafter declined rapidly in sensitive cells. This was reflected by a decline in viability of sensitive cells. The GSH content of both cell lines declined rapidly upon exposure to Cd but was higher in sensitive cells throughout the experiment. These results show that the biosynthetic pathway for (γEC)nG synthesis in sensitive cells is operational and that relative overproduction of (γEC)nG is not the mechanism of Cd-tolerance in a Cd-tolerant cell line of D. innoxia. Rapid formation of (γEC)nG:Cd complexes that bind all of the cellular Cd within 24 hours appears to correlate with tolerance in these cells.  相似文献   
115.
In response to adaptation to NaCl, cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) synthesize a major 26 kilodalton protein which has been named osmotin due to its induction by low water potentials. To help characterize the expression of osmotin in adapted cells, a cDNA clone for osmotin has been isolated. Abscisic acid induces messenger RNA encoding osmotin. Levels of this mRNA in adapted cells are approximately 15-fold higher than in unadapted cells. Message for osmotin is present at constant levels through the growth cycle of adapted cells, while in unadapted cells, the level decreases during exponential phase of growth and increases again when the cells approach stationary phase. While abscisic acid induces the message for osmotin, a low water potential environment appears to be required for accumulation of the protein. An osmotic shock to unadapted cells does not increase the amount of message or protein present most likely because this treatment does not induce immediately the accumulation of abscisic acid. The increased expression of osmotin in adapted cells is not correlated with an increase in osmotin gene copy number. Osmotin is homologous to a 24 kilodalton NaCl-induced protein in tomato, as well as thaumatin, maize α-amylase/trypsin inhibitor and a tobacco mosaic virus-induced pathogenesis-related protein.  相似文献   
116.
Tu SI  Nungesser E  Brauer D 《Plant physiology》1989,90(4):1636-1643
The substrate requirement of the H+-ATPase in purified corn root tonoplast vesicles was investigated. The coupled activities, ATP hydrolysis and proton pumping, were simultaneously supported only by Mg2+ or Mn2+. The presence of Ca2+ or Ba2+ did not significantly affect the coupled activities. The addition of Cd2+, Co2+, Cu2+, and Zn2+ inhibited both the hydrolysis of Mg-ATP and the proton transport. However, the inhibition of proton pumping was more pronounced. Based on equilibrium analysis, both ATP-complexed and free forms of these cations were inhibitory. Inhibition of the hydrolysis of Mg-ATP could be correlated to the concentrations of the ATP-complex of Zn. On the other hand, the free Cu2+ and Co2+ were effective in inhibiting hydrolysis. For proton pumping, the ATP complexes of Co2+, Cu2+, and Zn2+ were effective inhibitors. However, this inhibition could be further modulated by free Co2+, Cu2+, and Zn2+. While the equilibrium concentrations of Cd-ATP and free Cd2+ were not estimated, the total concentration of this cation needed to inhibit the coupled activities of the H+-ATPase was found to be in the range of 10 to 100 micromolars. The presence of free divalent cations also affected the structure of the lipid phase in tonoplast membrane as demonstrated by the changes of emission intensity and polarization of incorporated 1,6-diphenyl-1,3,5-hexatriene. The differential inhibition caused by these cations could be interpreted by interactions with the protogenic domain of the membrane as previously proposed in “indirect-link” mechanism.  相似文献   
117.
A new hydroxycinnamoyl-CoA:putrescine hydroxycinnamoyltransferase (PHT) was detected in two variant lines of Nicotiana tabacum L. (TX1, TX4) accumulating markedly different levels of caffeoylputrescine. The enzyme accepted only the aliphatic diamines putrescine, cadaverine and 1,3-diaminopropane at a ratio of 100:33:8. Caffeoyl- and feruloyl-CoAs were the best acyl donors. The apparent Km-values for caffeoyl-CoA and putrescine were near 3 and 10 micromolar, respectively, at the pH-optimum of 10.0. PHT activity was quite similar in low producing TX1 and high producing TX4 cells, while some other biosynthetic enzymes (phenylalanine ammonia-lyase, ornithine decarboxylase) were greatly enhanced in TX4 cells, suggesting that PHT does not catalyze the rate-limiting step in hydroxycinnamoylputrescine formation.  相似文献   
118.
Mesophyll cells from leaves of cowpea (Vigna unquiculata [L.] Walp.) plants grown under saline conditions were isolated and used for the determination of photosynthetic CO2 fixation. Maximal CO2 fixation rate was obtained when the osmotic potential of both cell isolation and CO2 fixation assay media were close to leaf osmotic potential, yielding a zero turgor pressure. Hypotonic and hypertonic media decreased the rate of photosynthesis regardless of the salinity level during plant growth. No decrease in photosynthesis was obtained for NaCl concentrations up to 87 moles per cubic meter in the plant growing media and only a 30% decrease was found at 130 moles per cubic meter when the osmotic potential of cell isolation and CO2 fixation media were optimal. The inhibition was reversible when stress was relieved. At 173 moles per cubic meter NaCl, photosynthesis was severely and irreversibly inhibited. This inhibition was attributed to toxic effects caused by high Cl and Na+ accumulation in the leaves. Uptake of sorbitol by intact cells was insignificant, and therefore not associated with cell volume changes. The light response curve of cells from low salinity grown plants was similar to the controls. Cells from plants grown at 173 moles per cubic meter NaCl were light saturated at a lower radiant flux density than were cells from lower salinity levels.  相似文献   
119.
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline → betaine aldehyde → betaine. Our previous experiments with intact chloroplasts, and in vivo18O2 labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD Hanson, D Rhodes [1988] Plant Physiol 88: 695-702). Here, we report the detection of such an activity in vitro. In the presence of O2 and reduced ferredoxin, the stromal fraction from spinach (Spinacia oleracea) chloroplasts converted choline to betaine aldehyde at rates similar to those in intact chloroplasts (20-50 nanomoles per hour per milligram protein). Incorporation of 18O from 18O2 by the in vitro reaction was demonstrated by fast atom bombardment mass spectrometry. Ferredoxin could be reduced either with thylakoids in the light, or with NADPH plus ferredoxin-NADP reductase in darkness; NADPH alone could not substitute for ferredoxin. No choline-oxidizing activity was detected in the stromal fraction of pea (Pisum sativum L.), a species that does not accumulate betaine. The spinach choline-oxidizing enzyme was stimulated by 10 millimolar Mg2+, had a pH optimum close to 8, and was insensitive to carbon monoxide. The specific activity was increased threefold in plants growing in 200 millimolar NaCl. Gel filtration experiments gave a molecular weight of 98 kilodaltons for the choline-oxidizing enzyme, and provided no evidence for other electron carriers which might mediate the reduction of the 98-kilodalton enzyme by ferredoxin.  相似文献   
120.
Fructose 2,6-bisphosphate hydrolyzing enzymes in higher plants   总被引:1,自引:1,他引:0       下载免费PDF全文
The phosphatases that hydrolyze fructose 2,6-bisphosphate in a crude spinach (Spinacia oleracea L.) leaf extract were separated by chromatography on blue Sepharose, into three fractions, referred to as phosphatases I, II, and III, which were further purified by various means. Phosphatase I hydrolyzed fructose 2,6-bisphosphate, with a Km value of 30 micromolar, to a mixture of fructose 2-phosphate (90%) and fructose 6-phosphate (10%). It acted on a wide range of substrates and had a maximal activity at acidic pH. Phosphatase II specifically recognized the osyl-link of phosphoric derivatives and had more affinity for the β-anomeric form. Its apparent Km for fructose 2,6-bisphosphate was 30 micromolar. It most likely corresponded to the fructose-2,6-bisphosphatase described by F. D. Macdonald, Q. Chou, and B. B. Buchanan ([1987] Plant Physiol 85: 13-16). Phosphatase III copurified with phosphofructokinase 2 and corresponded to the specific, low-Km (24 nanomolar) fructose-2,6-bisphosphatase purified and characterized by Y. Larondelle, E. Mertens, E. Van Schaftingen, and H. G. Hers ([1986] Eur J Biochem 161: 351-357). Three similar types of phosphatases were present in a crude extract of Jerusalem artichoke (Helianthus tuberosus) tuber. The concentration of fructose 2,6-bisphosphate decreased at a maximal rate of 30 picomoles per minute and per gram of fresh tissue in slices of Jerusalem artichoke tuber, upon incubation in 50 millimolar mannose. This rate could be accounted for by the maximal extractable activity of the low-Km fructose-2,6-bisphosphatase. A new enzymic method for the synthesis of β-glucose 1,6-bisphosphate from β-glucose 1-phosphate and ATP is described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号