首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166057篇
  免费   11723篇
  国内免费   1225篇
  2019年   149篇
  2016年   121篇
  2015年   97篇
  2014年   140篇
  2013年   102篇
  2012年   18123篇
  2011年   20271篇
  2010年   3097篇
  2009年   1503篇
  2008年   15612篇
  2007年   16311篇
  2006年   15069篇
  2005年   13984篇
  2004年   13369篇
  2003年   12386篇
  2002年   10743篇
  2001年   8279篇
  2000年   10468篇
  1999年   4135篇
  1998年   545篇
  1997年   376篇
  1996年   261篇
  1995年   266篇
  1994年   235篇
  1993年   241篇
  1992年   263篇
  1991年   255篇
  1990年   262篇
  1989年   290篇
  1988年   278篇
  1987年   247篇
  1986年   220篇
  1985年   221篇
  1984年   171篇
  1983年   234篇
  1982年   134篇
  1981年   114篇
  1971年   106篇
  1959年   492篇
  1958年   983篇
  1957年   998篇
  1956年   925篇
  1955年   913篇
  1954年   877篇
  1953年   772篇
  1952年   689篇
  1951年   631篇
  1950年   496篇
  1949年   207篇
  1948年   197篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Uribe EG  Stark B 《Plant physiology》1982,69(5):1040-1045
This study describes a specific Cu2+ and light-dependent inhibition of spinach (Spinacia oleracea L.) chloroplast reactions involving coupling factor 1 function. A primary effect is an inhibition of photophosphorylation induced by illumination of Class II chloroplasts with micromolar Cu2+ and pyocyanine in the absence of ADP, Mg2+, and HPO42−. The inhibition, which is dependent on free Cu2+ as indicated by protection by ethylene diamine tetraacetic acid and dithiothreitol, requires illumination (electron flow) for establishment of the specific inhibition to be noted. Protection is also afforded by uncouplers and some partial protection is provided by micromolar concentrations of ADP and ATP. The data strongly suggest that Cu2+ causes an O2-independent oxidation of sulfhydryl groups on coupling factor 1, which are essential to catalytic function. This conclusion is supported by the reduction of energy-dependent 3H-N-ethylmaleimide labeling of the γ subunit of coupling factor 1 by the Cu2+-light pretreatment.  相似文献   
952.
Thom M  Maretzki A  Komor E 《Plant physiology》1982,69(6):1315-1319
Vacuoles were isolated from suspension cultures of sugarcane (Saccharum sp.) cells by centrifugation of protoplasts at high g force against a 12% (w/v) Ficoll solution. Distribution of marker enzymes and Concanavalin A binding showed an 11% contamination of the vacuole preparation by cytoplasmic components, mitochondria, and endoplasmic reticulum, and 18% contamination by plasma membrane. Acid phosphatase, carboxypeptidase, protease, peroxidase, and ribonuclease activities were enriched in isolated vacuoles. Carboxypeptidase was tonoplast-bound, whereas the other enzymes were soluble. Sucrose, reducing sugars, and free amino acids were measured in protoplasts and vacuoles during growth of cells in suspension culture. Sucrose and reducing sugar content of vacuoles increased as the culture aged, while free amino acids decreased sharply.  相似文献   
953.
Regulation of H Excretion : EFFECTS OF OSMOTIC SHOCK   总被引:3,自引:3,他引:0       下载免费PDF全文
Osmotic shock, a 15-minute plasmolysis followed by a 15-minute rehydration in the cold, is a nondestructive technique which inhibits fusicoccin-stimulated H+ excretion from oat mesophyll cells (Avena sativa L.). Osmotic shock also causes a loss of intracellular solutes and stimulates H+ uptake, but osmoregulation can still occur, and enhanced H+ uptake is observed only at low external pH. It is concluded that osmotic shock interferes directly with the excretion of H+ rather than affecting only H+ or counter ion uptake.  相似文献   
954.
Cold-acclimated twigs of Amelanchier alnifolia Nutt. released less HCN at −4.5 C than nonacclimated twigs following slow freezing to −25 C or rapid freezing to −78 C. Cold-acclimated twigs frozen slowly to −25 C released more HCN than cold-acclimated twigs frozen only to −4.5 C. Cold-acclimated twigs frozen slowly to −25 C and then rapidly to −78 C released less HCN at −4.5 C than cold-acclimated twigs frozen rapidly to −78 C. In general, K+ efflux and the inability to reduce triphenyl tetrazolium chloride following freezing and thawing paralleled HCN release at −4.5 C. Because low K+ efflux and high triphenyl tetrazolium chloride reduction are known to depend upon membrane integrity, the increased K+ efflux and the decreased triphenyl tetrazolium chloride reduction following freezing and thawing provide indirect evidence that HCN release at −4.5 C is a measure of membrane damage in frozen cells.  相似文献   
955.
Proton excretion induced by optimal concentrations of indoleacetic acid (IAA) and fusicoccin (FC) differs not only in maximum rate of acidification but also in the lag before onset of H+ excretion and in sensitivity to cycloheximide. Because these differences might simply be a consequence of the difference in rate of proton excretion, FC and IAA have now been compared using oat coleoptiles (cv. Victory) under conditions where the rates of acidification are more similar, i.e. suboptimal FC versus optimal IAA. As the concentration of FC is reduced, the rate of H+ excretion decreases, the final equilibrium pH increases, and the lag before detectable acidification increases up to 7-fold. This enhanced lag period is not primarily a consequence of wall buffering, inasmuch as it persists when a low concentration of FC is added to sections which were already excreting H+ in response to IAA. An extended lag also occurs, upon reduction of FC levels, in the hyperpolarization of the membrane potential, before enhancement of O2 uptake and before the increased rate of Rb+ uptake. The presence or absence of a lag is not a distinguishing feature between FC and IAA actions on H+ excretion and cannot be used to discriminate between their sites of action. In contrast, the insensitivity of FC-induced H+ excretion to cycloheximide, as compared with the nearly complete inhibition of this auxin effect by cycloheximide, persists even at dilute concentrations of FC. This seems to be a basic difference in H+ excretion by IAA and FC.  相似文献   
956.
Application of levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase, to greening plant tissues causes ALA to accumulate at the expense of chlorophyll. 4,6-Dioxoheptanoic acid (DA), which has been reported to be an effective inhibitor of this enzyme in animal systems, has a similar but more powerful effect on ALA and chlorophyll metabolism in greening leaves of Hordeum vulgare L. var. Larker. Both LA and DA also inhibit the uptake of [14C]amino acids into etiolated and greening barley leaves and reduce their incorporation into protein. Treatment of etiolated and greening leaves with these compounds results in the inhibition of 14CO2 evolution from labeled precursors, including amino and organic acids. Inhibition of 14CO2 evolution by these compounds is more effective in greening leaves than in etiolated leaves when [4-14C]ALA or [1-14C]glutamate are employed as precursors. Both LA and DA also inhibit the uptake and increase the incorporation of 32Pi into organophosphorus by etiolated barley leaves. These results indicate that LA and DA have more far-reaching effects upon plant metabolism than was previously believed.  相似文献   
957.
The blue-green alga Coccochloris peniocystis photosynthesizes optimally over the pH range of 7.0 to 10.0, but the O2-evolution rate is inhibited below pH 7.0 and ceases below pH 5.25. Measurement of the inorganic carbon pool in this alga in the light, using the silicone-fluid filtration technique demonstrated that the rate of accumulation of dissolved inorganic carbon remained relatively constant over a wide pH range. At external dissolved inorganic carbon concentrations of 0.56 to 0.89 millimolar the internal concentration after 30 seconds illumination was greater than 3.5 millimolar over the entire pH range. Intracellular pH measured in the light using [14C]5,5-dimethyloxazolidine-2,4-dione and [14C]methylamine dropped from pH 7.6 at an external pH of 7.0 to pH 6.6 at an external pH of 5.25. Above an external pH of 7.0 the intracellular pH rose gradually to pH 7.9 at an external pH 10.0. Ribulose-1,5-bisphosphate carboxylase activity of cell-free algal extracts exhibited optimal activity at pH 7.5 to 7.8 but was inactive below pH 6.5. It is suggested that the inability of Coccochloris to maintain its intracellular pH when in an acidic environment restricts its photosynthetic capacity by a direct pH effect on the principal CO2 fixing enzyme.  相似文献   
958.
Subcellular Localization of IAA Oxidase in Peas   总被引:4,自引:3,他引:1       下载免费PDF全文
Waldrum JD  Davies E 《Plant physiology》1981,68(6):1303-1307
Indoleacetic acid (IAA) oxidase has been reported to be involved in plant growth because of its alleged role in the control of endogenous IAA levels. This purported role was reevaluated in terms of the properties and subcellular location of the enzyme in etiolated pea (Pisum sativum L. var. Alaska) epicotyls.  相似文献   
959.
To determine the usefulness of R-wave amplitude changes during exercise testing for the diagnosis of coronary artery disease (CAD) and to understand the discrepancies that have been described in the literature regarding their value, we studied two groups of patients by means of electrocardiographic (EKG) treadmill testing and coronary arteriography. Group I was composed of 149 patients who were studied prospectively. The specificity of R-wave changes measured from preexercise to immediately postexercise (SRV(5)) was 81%, but that of R-wave changes measured from preexercise to peak exercise (URV(5)) was 46%. A group of 156 patients (Group II) evaluated retrospectively showed a high specificity for the SRV(5) (84%) and poor specificity for the URV(5) (39%). The sensitivity of the SRV(5) was 38% in Group I and 42% in Group II. Therefore, if measured during the immediate postexercise period and not at peak exercise, changes in R-wave amplitude may be of value in the diagnosis of coronary artery disease by electrocardiographic exercise testing.  相似文献   
960.
In a light-dependent reaction (3.5 kilolux) at pH 5, the evolution of hexanal, ethane, and ethylene has been established with cell suspensions of the diatom, Phaeodactylum tricornutum. During this process, chlorophyll and carotenoids are partially bleached. Addition of 25 millimolar α-linolenic acid or 12 millimolar docosahexaenoic acid yield total pigment destruction and enhancement of ethylene and ethane formation (by about 150 and 7,600%, respectively), whereas hexanal production decreases by 70%. Eicosapentaenoic acid, the major polyunsaturated fatty acid in diatoms, stimulates both ethane and hexanal formation (by about 1,400 and 130%, respectively), but reduces ethylene production (by about 60%). This competition suggests that the production of the volatile compounds is closely connected, although hexanal and ethylene obviously possess different unsaturated fatty acids as precursors. Both the kind of the fatty acids and their relative amounts seem to determine the pattern of the evolved hydrocarbons. The presence of 10 millimolar propylgallate inhibits the evolution of the volatile compounds by about 80%, indicating that radical formation might play a key role in this light-dependent cascade of reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号