首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749653篇
  免费   76824篇
  国内免费   1232篇
  827709篇
  2018年   16378篇
  2017年   14961篇
  2016年   14461篇
  2015年   10869篇
  2014年   12411篇
  2013年   17330篇
  2012年   23170篇
  2011年   31467篇
  2010年   24463篇
  2009年   20178篇
  2008年   26841篇
  2007年   28898篇
  2006年   17752篇
  2005年   17470篇
  2004年   17716篇
  2003年   17169篇
  2002年   16517篇
  2001年   26200篇
  2000年   26232篇
  1999年   21111篇
  1998年   7968篇
  1997年   8344篇
  1996年   7928篇
  1995年   7431篇
  1994年   7341篇
  1993年   7351篇
  1992年   18139篇
  1991年   17896篇
  1990年   17470篇
  1989年   17098篇
  1988年   16271篇
  1987年   15751篇
  1986年   14712篇
  1985年   14703篇
  1984年   12378篇
  1983年   10941篇
  1982年   8546篇
  1981年   7933篇
  1980年   7462篇
  1979年   12261篇
  1978年   9716篇
  1977年   9085篇
  1976年   8708篇
  1975年   9475篇
  1974年   10493篇
  1973年   10270篇
  1972年   9822篇
  1971年   8934篇
  1970年   7664篇
  1969年   7660篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The National Institute of General Medical Sciences (NIGMS) at the U.S. National Institutes of Health (NIH) is committed to supporting the safety of the nation’s biomedical research and training environments. Institutional training grants affect many trainees and can have a broad influence across their parent institutions, making them good starting points for our initial efforts to promote the development and maintenance of robust cultures of safety at U.S. academic institutions. In this Perspective, we focus on laboratory safety, although many of the strategies we describe for improving laboratory safety are also applicable to other forms of safety including the prevention of harassment, intimidation, and discrimination. We frame the problem of laboratory safety using a number of recent examples of tragic accidents, highlight some of the lessons that have been learned from these and other events, discuss what NIGMS is doing to address problems related to laboratory safety, and outline steps that institutions can take to improve their safety cultures.

All new funding opportunity announcements (FOAs) for training programs supported by the National Institute of General Medical Sciences (NIGMS) contain the expectation that the programs will promote “inclusive, safe and supportive scientific and training environments.” In this context, the word “safe” refers to several aspects of safety. First, we mean an environment free from harassment and intimidation, in which everyone participating is treated in a respectful and supportive manner, optimized for productive learning and research. We also mean that institutions should ensure that their campuses are as safe as possible so that individuals can focus on their studies and research. Finally, we mean safety in the laboratory and clinical spaces. In this Perspective, we focus on this last issue and describe some of the approaches NIGMS is taking to help the biomedical research community move toward an enhanced culture of safety in which core values and the behaviors of leadership, principal investigators (PIs), research staff, and trainees emphasize safety over competing goals.  相似文献   
2.
3.
4.
5.
The development of microalgae culture technology has been an integral part to produce biomass feedstock to biofuel production. Due to this, numerous attempts have been made to improve some operational parameters of microalgae production. Despite this, specialized research in cell growth monitoring, considered as a fundamental parameter to achieve profitable applications of microalgae for biofuels production, presents some opportunity areas mainly related to the development of specific and accurate methodologies for growth monitoring. In this work, predictive models were developed through statistical tools that correlate a specific micro-algal absorbance with cell density measured by cell count (cells∙per ml), for three species of interest for biofuels production. The results allow the precise prediction of cell density through a logistic model based on spectrophotometry, valid for all the kinetics analysed. The adjusted determination coefficients () for the developed models were 0·993, 0·995 and 0·994 for Dunaliella tertiolecta, Nannochloropsis oculata and Chaetoceros muelleri respectively. The results showed that the equations obtained here can be used with an extremely low error (≤2%) for all the cell growth ranges analysed, with low operational cost and high potential of automation. Finally, a user-friendly software was designed to give practical use to the developed predictive models.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号