首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   867362篇
  免费   101938篇
  国内免费   333篇
  2016年   10237篇
  2015年   13941篇
  2014年   16523篇
  2013年   23110篇
  2012年   25927篇
  2011年   26435篇
  2010年   17869篇
  2009年   16614篇
  2008年   23746篇
  2007年   24823篇
  2006年   23170篇
  2005年   22280篇
  2004年   22301篇
  2003年   21192篇
  2002年   20625篇
  2001年   35285篇
  2000年   35637篇
  1999年   28674篇
  1998年   10580篇
  1997年   11055篇
  1996年   10555篇
  1995年   10105篇
  1994年   9936篇
  1993年   9870篇
  1992年   24619篇
  1991年   24469篇
  1990年   24022篇
  1989年   23338篇
  1988年   21947篇
  1987年   21131篇
  1986年   19859篇
  1985年   19860篇
  1984年   16760篇
  1983年   14709篇
  1982年   11446篇
  1981年   10500篇
  1980年   10016篇
  1979年   16433篇
  1978年   13002篇
  1977年   11977篇
  1976年   11444篇
  1975年   12514篇
  1974年   13503篇
  1973年   13229篇
  1972年   12467篇
  1971年   11010篇
  1970年   9744篇
  1969年   9360篇
  1968年   8689篇
  1967年   7519篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
982.
The influence of malate and cytochrome c on fatty acid oxidation under control and ischemic conditions was investigated. In the medium without malate, cytochrome did not make fatty acid oxidation decreased during ischemia return to normal. Oxidation in the media containing malate and cytochrome did not differ from control only when it was measured after preliminary oxidation of endogenous substrates. The ratio of palmitoyl-CoA and palmitoyl carnitine to the respiration rates at state 3 was unchanged at 60 min ischemia. Apparently, no changes in carnitine acyltransferase playing a role in oxidation of palmitoyl-CoA took place. Thus, the decrease of fatty acid oxidation at early periods of ischemia is largely caused by a reduction in the content of cytochrome c and intermediates of Krebs cycle in the mitochondria.  相似文献   
983.
Studies with substrate analogues and the pH optimum indicated the involvement of carboxyl group in the active site of goat carboxypeptidase A. Chemical modification of the enzyme with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide methoI -p-toluene sulphonate, a carboxyl specific reagent, led to loss of both esterase and peptidase activities. Protection studies showed that this carboxyl group was in the active site and was protected by Βp-phenylpropionic acid and glycyl-L-tyrosine. Kinetic studies also confirmed the involvement of carboxylic group because the enzyme modification with water soluble carbodiimide was a two step reaction which excluded the possibility of tyrosine or lysine which are known to give a one step reaction with this reagent  相似文献   
984.
Daily ingestion of iodide alone is not adequate to sustain production of the thyroid hormones, tri- and tetraiodothyronine. Proper maintenance of iodide in vivo also requires its active transport into the thyroid and its salvage from mono- and diiodotyrosine that are formed in excess during hormone biosynthesis. The enzyme iodotyrosine deiodinase responsible for this salvage is unusual in its ability to catalyze a reductive dehalogenation reaction dependent on a flavin cofactor, FMN. Initial characterization of this enzyme was limited by its membrane association, difficult purification and poor stability. The deiodinase became amenable to detailed analysis only after identification and heterologous expression of its gene. Site-directed mutagenesis recently demonstrated that cysteine residues are not necessary for enzymatic activity in contrast to precedence set by other reductive dehalogenases. Truncation of the N-terminal membrane anchor of the deiodinase has provided a soluble and stable source of enzyme sufficient for crystallographic studies. The structure of an enzyme·substrate co-crystal has become invaluable for understanding the origins of substrate selectivity and the mutations causing thyroid disease in humans.  相似文献   
985.
We have shown previously that cDNAs for the M1 and M2 subunits of ribonucleotide reductase, ornithine decarboxylase (ODC), and p5-8, a 55,000-Dalton protein, hybridize to amplified genomic sequences in a highly hydroxyurea-resistant hamster cell line. We have extended these observations to include two additional, independently isolated, hydroxyurea-resistant cell lines: SC8, a single-step hamster ovary cell line, and KH450, a multistep human myeloid leukemic cell line, have also undergone genomic amplification for sequences homologous to ODC and p5-8 cDNAs. However, neither SC8 nor KH450 contains amplified genomic sequences homologous to an M1 cDNA probe. A panel of mouse-hamster somatic cell hybrids was used to map sequences homologous to M1, M2, ODC, and 5-8 cDNAs in the hamster genome. The M2, ODC, and p5-8 cDNAs hybridized to DNA fragments that segregated with hamster chromosome 7. In contrast, M1 cDNA hybridized to DNA fragments that segregated with hamster chromosome 3. These data suggest that the genes RRM2, (M2), ODC, and p5-8, but not RRMI (M1), are linked and may have been co-amplified in the selection of the hydroxyurea-resistant hamster and human cell lines.  相似文献   
986.
It was shown in in vitro experiments that etmozin at a concentration of 100 micrograms/ml significantly suppressed (by 21%) platelet aggregation induced by ADP, but it had no effect on platelet aggregation induced by arachidonic acid. In in vivo experiments etmozin was found to cause a marked suppression of tendon collagen-induced platelet aggregation in the doses 2-5 mg/kg having antiarrhythmic activity. Under suppressed platelet aggregation induced by indomethacin, the prostaglandin biosynthesis blocker etmozin displayed no antiaggregation effect. It is suggested that etmozin effects on ADP release from platelets play the main role in the mechanism of its antiaggregation action.  相似文献   
987.
It has been pointed out by several different groups of investigators in the past several years that ascorbic acid was a potent inhibitor of the binding of dopamine (DA) agonists including 3H-DA itself and 3H-ADTN, 3H-apomorphine and 3H-norpropylapomorphine to neostriatal membrane preparations. However, the significance of this effect of ascorbic acid has been controversial. For example, it has recently been claimed that the stereospecific binding of DA agonists is facilitated by ascorbic acid and can be measured only in its presence. In the present study in neostriatal membrane preparations in the absence of ascorbic acid, the binding of 3H-DA was very potently inhibited by potent DA agonists (DA, ADTN, apomorphine). Considerably weaker effects were obtained with norepinephrine, isoproterenol, serotonin, catechol and pyrogallol. Stereospecific effects were clearly observed in that the binding of 3H-DA was inhibited to a much greater extent by several biologically active enantiomers than by their less active counterparts. For example, (-)-2-hydroxyapomorphine and (-)-norpropylapomorphine were much more potent inhibitors than their corresponding (+) isomers. This binding of 3H-DA was also very strongly inhibited by sodium ascorbate and several other reducing agents. In control experiments in the neostriatal membrane preparation in the absence of ascorbic acid, there was no detectable decomposition of 3H-DA. The data suggest that 3H-DA can, in the absence of sodium ascorbate, bind stereospecifically to a site that has the properties of a DA receptor. Furthermore, sodium ascorbate is a potent inhibitor of this stereospecific binding.  相似文献   
988.
The enzymes of phospholipid synthesis in Clostridium butyricum   总被引:5,自引:0,他引:5  
We have examined extracts of Clostridium butyricum for several enzymes of phospholipid synthesis. Membrane particles were shown to catalyze the formation of CDP-diglyceride from [3H]CTP and phosphatidic acid. The reaction was dependent on Mg2+ and stimulated by monovalent cations. CDP-diglyceride formed in vitro was found to be a substrate for both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase. The formation of phosphatidylglycerophosphate from added CDP-diglyceride and [U-14C]sn-glycerol-3-phosphate was dependent on Mg2+ and Triton X-100. The dephosphorylation of endogenously-generated phosphatidylglycerophosphate to yield phosphatidylglycerol was observed to be pH-dependent. The formation of phosphatidylserine from CDP-diglyceride and L-[3-14C]serine was stimulated by Mg2+ and Triton X-100. dCDP-diglyceride was a suitable substrate for both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase. Phosphatidylserine decarboxylase activity was barely detectable in membrane particles from C. butyricum. The addition of E. coli membrane particles provided efficient phosphatidylserine decarboxylase activity in this system. Although plasmalogens are the principal lipids of C. butyricum, none of the products of phospholipid synthesis formed in vitro contained measurable amounts of plasmalogens. The subcellular distribution of both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase in C. butyricum was also studied. Both were found to be membrane-associated.  相似文献   
989.
The study of the structural and functional properties of key components of polar marine ecosystems has received increased attention in order to better understand the ecological consequences of future sea temperature rise and seasonal ice retraction. Owing to this purpose, during the ATOS-Arctic cruise, held in July 2007 in the framework of the 2007–2008 International Polar Year, we studied the respiratory carbon demand of mesozooplankton as well as their contribution to the regeneration of inorganic nitrogen and phosphorus (NH4-N and PO4-P) via excretion. The studied area comprised several stations along a latitudinal gradient in the East Greenland current, plus a network of stations NW of the Svalbard islands. The specific respiratory carbon losses and phosphorus (PO4-P) excretion rates were similar or slightly higher than some reports for Arctic mesozooplankton, but the nitrogen (NH4-N) excretion rates were higher by a factor of 3 when compared with previous data sets. The mesozooplankton respiratory losses were equivalent to 23% of primary production, and at turn zooplankton contributed by excretion to more than 50% of the N and P required by phytoplankton. Although C:N, C:P and N:P metabolic atomic quotients almost coincided with the average Redfield’s stoichiometric ratios, the low C:N values when compared to previous reports suggested a predominance of protein-related metabolic substrates. The potential consequences of changes observed in the C:N, N:P and C:P metabolic ratios of mesozooplankton for Arctic marine ecosystems are discussed.  相似文献   
990.
Growing cultures of an autolysis-defective pneumococcal mutant were exposed to [3H]benzylpenicillin at various multiples of the minimal inhibitory concentration and incubated until the growth of the cultures was halted. During the process of growth inhibition, we determined the rates and degree of acylation of the five penicillin-binding proteins (PBPs) and the rates of peptidoglycan incorporation, protein synthesis, and turbidity increase. The time required for the onset of the inhibitory effects of benzylpenicillin was inversely related to the concentration of the antibiotic, and inhibition of peptidoglycan incorporation always preceded inhibition of protein synthesis and growth. When cultures first started to show the onset of growth inhibition, the same characteristic fraction of each PBP was in the acylated form in all cases, irrespective of the antibiotic concentration. Apparently, saturation of one or more PBPs with the antibiotic beyond these threshold levels is needed to bring about interference with normal peptidoglycan production and cellular growth. Although it was not possible to correlate the inhibition of cell wall synthesis or cell growth with the degree of acylation (percentage saturation) of any single PBP, there was a correlation between the amount of peptidoglycan synthesized and the actual amount of PBP 2b that was not acylated. In cultures exposed to benzylpenicillin concentrations greater than eight times the minimal inhibitory concentration, the rates of peptidoglycan incorporation underwent a rapid decline when bacterial growth stopped. However, in cultures exposed to lower concentrations of benzylpenicillin (one to six times the minimal inhibitory concentration) peptidoglycan synthesis continued at constant rate for prolonged periods, after the turbidity had ceased to increase. We conclude that inhibition of bacterial growth does not require a complete inhibition or even a major decline in the rate of peptidoglycan incorporation. Rather, inhibition of growth must be caused by an as yet undefined process that stops cell division when the rate of incorporation of peptidoglycan (or synthesis of protein) falls below a critical value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号