首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11713篇
  免费   791篇
  国内免费   7篇
  12511篇
  2024年   35篇
  2023年   67篇
  2022年   177篇
  2021年   343篇
  2020年   179篇
  2019年   239篇
  2018年   263篇
  2017年   225篇
  2016年   343篇
  2015年   629篇
  2014年   624篇
  2013年   700篇
  2012年   952篇
  2011年   937篇
  2010年   560篇
  2009年   515篇
  2008年   688篇
  2007年   644篇
  2006年   545篇
  2005年   504篇
  2004年   507篇
  2003年   524篇
  2002年   455篇
  2001年   99篇
  2000年   72篇
  1999年   101篇
  1998年   125篇
  1997年   61篇
  1996年   71篇
  1995年   71篇
  1994年   58篇
  1993年   59篇
  1992年   67篇
  1991年   70篇
  1990年   50篇
  1989年   52篇
  1988年   40篇
  1987年   40篇
  1986年   38篇
  1985年   69篇
  1984年   50篇
  1983年   56篇
  1982年   49篇
  1981年   42篇
  1980年   37篇
  1979年   36篇
  1978年   41篇
  1977年   36篇
  1974年   37篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
132.
Light-limited rates of photosynthesis normalized for chlorophyll a, (α), and actual photon absorption (quantum efficiency, Ф) were determined for six eponentially growing algal species grown under identical conditions. The same parameters, α and Ф, were also monitored for a single diatom species, Thalassiosira pseudonana Hasle & Heimdal, through its growth cycle in batch culture. Statistical differences in α could be demonstrated among the six different exponentially growing species while no differences could be shown for Ф. Statistical differences among the six species were minimized when photosynthetic rates were normalized for in vivo fluorescence rather than extracted chlorophyll a. Both α and Ф were constant while T. pseudonana was in the exponential phase of growth, but both declined as the culture entered stationary phase. While cells were in exponential growth, differences in a were attributed to varying rates of in vivo light absorption per chlorophyll a, thus providing experimental evidence that the in vivo chlorophyll a extinction coefficient, kc (m2· mg Chl a?1), cannot be assumed constant.  相似文献   
133.
Reverse latitudinal trends in species richness of pitcher-plant food webs   总被引:3,自引:0,他引:3  
Latitudinal patterns in species richness have been well documented for guilds and individual trophic groups, but comparable patterns for entire, multitrophic communities have not been described. We studied the entire food web that inhabits the water‐filled leaves of the pitcher plant Sarracenia purpurea across North America at two spatial scales: among sites and among leaves within sites. Contrary to the expectation, total species richness at both scales increased with latitude, because of increasing species richness at the lower trophic levels. This latitudinal pattern may be driven by a top‐down effect. The abundance of the mosquito Wyeomyia smithii, a ubiquitous top predator in this system, decreases from south to north and may permit greater species richness of prey trophic levels at higher latitudes.  相似文献   
134.
A pair of stereoisomeric covalent adducts to guanine in double-stranded DNA, derived from the reaction of mutagenic and tumorigenic metabolites of benzo[a]pyrene, have been well characterized structurally and thermodynamically. Both high-resolution NMR solution structures and an array of thermodynamic data are available for these 10S (+)- and 10R (-)-trans-anti -[BP]-N(2)-dG adducts in double-stranded deoxyoligonucleotides. The availability of experimentally well-characterized duplexes containing these two stereoisomeric guanine adducts provides an opportunity for evaluating the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for computing thermodynamic properties from molecular dynamics ensembles. We have carried out 3-ns molecular dynamics simulations, using NMR solution structures as the starting models for the 10S (+)- and 10R (-)-trans-anti-dG adducts in a DNA duplex 11-mer using AMBER 6.0. We employed the MM-PBSA method to compute the free energies, enthalpies, and entropies of the two adducts. Our complete thermodynamic analysis agrees quite well with the full experimental thermodynamic characterization of these adducts, showing essentially equal stabilities of the two adducts. We also calculated the nuclear Overhauser effect (NOE) distances from the molecular dynamics trajectories, and compared them against the experimental NMR-derived NOE distances. Our results showed that the simulated structures are in good agreement with the NMR experimental NOE data. Furthermore, the molecular dynamics simulations provided new structural and biological insights. Specifically, the puzzling observation that the BP aromatic ring system in the 10S (+)-trans-anti-dG adduct is more exposed to the aqueous solvent than the 10R (-)-trans-anti-dG adduct, is rationalized in terms of the adduct structures. The structural and thermodynamic features of these stereoisomeric adducts are also discussed in relation to their reported low susceptibilities to nucleotide excision repair.  相似文献   
135.
Character displacement is a potentially important process driving trait evolution and species diversification. Floral traits may experience character displacement in response to pollinator‐mediated competition (ecological character displacement) or the risk of forming hybrids with reduced fitness (reproductive character displacement). We test these and alternative hypotheses to explain a yellow‐white petal color polymorphism in Leavenworthia stylosa, where yellow morphs are spatially associated with a white‐petaled congener (Leavenworthia exigua) that produces hybrids with complete pollen sterility. A reciprocal transplant experiment found limited evidence of local adaptation of yellow color morphs via increased survival and seed set. Pollinator observations revealed that Leavenworthia attract various pollinators that generally favor white petals and exhibit color constancy. Pollen limitation experiments showed that yellow petals do not alleviate competition for pollination. Interspecific pollinator movements were infrequent and low hybridization rates (~0.40–0.85%) were found in each morph, with natural rates likely being lower. Regardless, hybridization rates were significantly higher in white morphs of L. stylosa, yielding a small selection coefficient of s = 0.0042 against this phenotype in sympatry with L. exigua. These results provide support for RCD as a mechanism contributing to the pattern of petal color polymorphism in L. stylosa.  相似文献   
136.
To understand how environmental changes have influenced forest productivity, stemwood biomass (B) dynamics were analyzed at 1267 permanent inventory plots, covering a combined 209 ha area of unmanaged temperate‐maritime forest in southwest British Columbia, Canada. Net stemwood production (ΔB) was derived from periodic remeasurements of B collected over a 40‐year measurement period (1959–1998) in stands ranging from 20 to 150 years old. Comparison between the integrated age response of net stemwood production, ΔB(A), and the age response of stemwood biomass, B(A), suggested a 58 ± 11% increase in ΔB between the first 40 years of the chronosequence period (1859–1898) and the measurement period. To estimate extrinsic forcing on ΔB, several different candidate models were developed to remove variation explained by intrinsic factors. All models exhibited temporal bias, with positive trends in (observed minus predicted) residual ΔB ranging between of 0.40 and 0.64% yr?1. Applying the same methods to stemwood growth (G) indicated residual increases ranging from 0.43 and 0.67% yr?1. Higher trend estimates corresponded with models that included site index (SI) as a predictor, which may reflect exaggeration of the age‐decline in SI tables. Choosing a model that excluded SI, suggested that ΔB increased by 0.40 ± 0.18% yr?1, while G increased by 0.43 ± 0.12% yr?1 over the measurement period. Residual G was significantly correlated with atmospheric carbon dioxide (CO2), temperature (T), and climate moisture index (CMI). However, models driven with climate and CO2, alone, could not simultaneously explain long‐term and measurement‐period trends without additional representation of indirect effects, perhaps reflecting compound interest on direct physiological responses to environmental change. Evidence of accelerating forest regrowth highlights the value of permanent inventories to detect and understand systematic changes in forest productivity caused by environmental change.  相似文献   
137.
The substance P neurokinin 1 receptor (NK1R) regulates motility, secretion, inflammation and pain in the intestine. The distribution of the NK1R is a key determinant of the functional effects of substance P in the gut. Information regarding the distribution of NK1R in subtypes of mouse enteric neurons is lacking and is the focus of the present study. NK1R immunoreactivity (NK1R-IR) is examined in whole-mount preparations of the mouse distal colon by indirect immunofluorescence and confocal microscopy. The distribution of NK1R-IR within key functional neuronal subclasses was determined by using established neurochemical markers. NK1R-IR was expressed by a subpopulation of myenteric and submucosal neurons; it was mainly detected in large multipolar myenteric neurons and was colocalized with calcitonin gene-related peptide, neurofilament M, choline acetyltransferase and calretinin. The remaining NK1R-immunoreactive neurons were positive for nitric oxide synthase. NK1R was expressed by most of the submucosal neurons and was exclusively co-expressed with vasoactive intestinal peptide, with no overlap with choline acetyltransferase. Treatment with substance P resulted in the concentration-dependent internalisation of NK1R from the cell surface into endosome-like structures. Myenteric NK1R was mainly expressed by intrinsic primary afferent neurons, with minor expression by descending interneurons and inhibitory motor neurons. Submucosal NK1R was restricted to non-cholinergic secretomotor neurons. These findings highlight key differences in the neuronal distribution of NK1R-IR between the mouse, rat and guinea-pig, with important implications for the functional role of NK1R in regulating intestinal motility and secretion.  相似文献   
138.
Cryptochrome blue-light photoreceptors are found in both plants and animals and have been implicated in numerous developmental and circadian signaling pathways. Nevertheless, no action spectrum for a physiological response shown to be entirely under the control of cryptochrome has been reported. In this work, an action spectrum was determined in vivo for a cryptochrome-mediated high-irradiance response, the blue-light-dependent inhibition of hypocotyl elongation in Arabidopsis. Comparison of growth of wild-type, cry1cry2 cryptochrome-deficient double mutants, and cryptochrome-overexpressing seedlings demonstrated that responsivity to monochromatic light sources within the range of 390 to 530 nm results from the activity of cryptochrome with no other photoreceptor having a significant primary role at the fluence range tested. In both green- and norflurazon-treated (chlorophyll-deficient) seedlings, cryptochrome activity is fairly uniform throughout its range of maximal response (390-480 nm), with no sharply defined peak at 450 nm; however, activity at longer wavelengths was disproportionately enhanced in CRY1-overexpressing seedlings as compared with wild type. The action spectrum does not correlate well with the absorption spectra either of purified recombinant cryptochrome photoreceptor or to that of a second class of blue-light photoreceptor, phototropin (PHOT1 and PHOT2). Photoreceptor concentration as determined by western-blot analysis showed a greater stability of CRY2 protein under the monochromatic light conditions used in this study as compared with broad band blue light, suggesting a complex mechanism of photoreceptor activation. The possible role of additional photoreceptors (in particular phytochrome A) in cryptochrome responses is discussed.  相似文献   
139.
140.
Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ∼52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号