首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3543篇
  免费   392篇
  2022年   37篇
  2021年   76篇
  2020年   52篇
  2019年   46篇
  2018年   55篇
  2017年   48篇
  2016年   84篇
  2015年   147篇
  2014年   132篇
  2013年   145篇
  2012年   187篇
  2011年   165篇
  2010年   114篇
  2009年   87篇
  2008年   136篇
  2007年   115篇
  2006年   114篇
  2005年   103篇
  2004年   107篇
  2003年   106篇
  2002年   99篇
  2001年   84篇
  2000年   85篇
  1999年   69篇
  1998年   38篇
  1997年   42篇
  1996年   45篇
  1995年   28篇
  1994年   33篇
  1993年   34篇
  1992年   68篇
  1991年   80篇
  1990年   67篇
  1989年   65篇
  1988年   48篇
  1987年   58篇
  1986年   42篇
  1985年   40篇
  1984年   39篇
  1983年   45篇
  1982年   42篇
  1981年   37篇
  1979年   54篇
  1978年   48篇
  1977年   49篇
  1975年   39篇
  1974年   48篇
  1973年   41篇
  1972年   44篇
  1968年   30篇
排序方式: 共有3935条查询结果,搜索用时 15 毫秒
951.
Predawn plant water potential (Psi(w)) is used to estimate soil moisture available to plants because plants are expected to equilibrate with the root-zone Psi(w). Although this equilibrium assumption provides the basis for interpreting many physiological and ecological parameters, much work suggests predawn plant Psi(w) is often more negative than root-zone soil Psi(w). For many halophytes even when soils are well-watered and night-time shoot and root water loss eliminated, predawn disequilibrium (PDD) between leaf and soil Psi(w) can exceed 0.5 MPa. A model halophyte, Sarcobatus vermiculatus, was used to test the predictions that low predawn solute potential (Psi(s)) in the leaf apoplast is a major mechanism driving PDD and that low Psi(s) is due to high Na+ and K+ concentrations in the leaf apoplast. Measurements of leaf cell turgor (Psi(p)) and solute potential (Psi(s)) of plants grown under a range of soil salinities demonstrated that predawn symplast Psi(w) was 1.7 to 2.1 MPa more negative than predawn xylem Psi(w), indicating a significant negative apoplastic Psi(s). Measurements on isolated apoplastic fluid indicated that Na+ concentrations in the leaf apoplast ranged from 80 to 230 mM, depending on salinity, while apoplastic K+ remained around 50 mM. The water relations measurements suggest that without a low apoplastic Psi(s), predawn Psi(p) may reach pressures that could cause cell damage. It is proposed that low predawn apoplastic Psi(s) may be an efficient way to regulate Psi(p) in plants that accumulate high concentrations of osmotica or when plants are subject to fluctuating patterns of soil water availability.  相似文献   
952.
The fusion of the Caenorhabditis elegans uterine anchor cell (AC) with the uterine-seam cell (utse) is an excellent model system for studying cell-cell fusion, which is essential to animal development. We obtained an egg-laying defective (Egl) mutant in which the AC fails to fuse with the utse. This defect is highly specific: other aspects of utse development and other cell fusions appear to occur normally. We find that defect is due to a missense mutation in the nsf-1 gene, which encodes N-ethylmaleimide-sensitive factor (NSF), an intracellular membrane fusion factor. There are two NSF-1 isoforms, which are expressed in distinct tissues through two separate promoters. NSF-1L is expressed in the uterus, including the AC. We find that nsf-1 is required cell-autonomously in the AC for its fusion with the utse. Our results establish AC fusion as a paradigm for studying cell fusion at single cell resolution and demonstrate that the NSF ATPase is a key player in this process.  相似文献   
953.
Kuo HF  Olsen KM  Richards EJ 《Genetics》2006,173(1):401-417
We investigated genome dynamics at a chromosome end in the model plant Arabidopsis thaliana through a study of natural variation in 35 wild accessions. We focused on the single-copy subtelomeric region of chromosome 1 north (approximately 3.5 kb), which represents the relatively simple organization of subtelomeric regions in this species. PCR fragment-length variation across the subtelomeric region indicated that the 1.4-kb distal region showed elevated structural variation relative to the centromere-proximal region. Examination of nucleotide sequences from this 1.4-kb region revealed diverse DNA rearrangements, including an inversion, several deletions, and an insertion of a retrotransposon LTR. The structures at the deletion and inversion breakpoints are characteristic of simple deletion-associated nonhomologous end-joining (NHEJ) events. There was strong linkage disequilibrium between the distal subtelomeric region and the proximal telomere, which contains degenerate and variant telomeric repeats. Variation in the proximal telomere was characterized by the expansion and deletion of blocks of repeats. Our sample of accessions documented two independent chromosome-healing events associated with terminal deletions of the subtelomeric region as well as the capture of a scrambled mitochondrial DNA segment in the proximal telomeric array. This natural variation study highlights the variety of genomic events that drive the fluidity of chromosome termini.  相似文献   
954.
We have developed a real-time nucleic acid sequence based amplification (NASBA) procedure for detection of infectious salmon anaemia virus (ISAV). Primers were designed to target a 124 nucleotide region of ISAV genome segment 8. Amplification products were detected in real-time with a molecular beacon (carboxyfluorescin [FAM]-labelled and methyl-red quenched) that recognised an internal region of the target amplicon. Amplification and detection were performed at 41 degrees C for 90 min in a Corbett Research Rotorgene. The real-time NASBA assay was compared to a conventional RT-PCR for ISAV detection. From a panel of 45 clinical samples, both assays detected ISAV in the same 19 samples. Based on the detection of a synthetic RNA target, the real-time NASBA procedure was approximately 100x more sensitive than conventional RT-PCR. These results suggest that real-time NASBA may represent a useful diagnostic procedure for ISAV.  相似文献   
955.
Urotensin II (UII) was first discovered in the urophyses of goby fish and later identified in mammals, while urotensin II-related peptide (URP) was recently isolated from rat brain. We studied the effects of UII on isolated heart preparations of Chinook salmon and Sprague–Dawley rats. Native rat UII caused potent and sustained, dose-dependent dilation of the coronary arteries in the rat, whereas non-native UII (human and trout UII) showed attenuated vasodilation. Rat URP dilated rat coronary arteries, with 10-fold less potency compared with rUII. In salmon, native trout UII caused sustained dilation of the coronary arteries, while rat UII and URP caused significant constriction. Nω-nitro-l-arginine methyl (l-NAME) and indomethacin significantly attenuated the URP and rat UII-induced vasodilation in the rat heart. We conclude that UII is a coronary vasodilator, an action that is species form specific. We also provide the first evidence for cardiac actions of URP, possibly via mechanisms common with UII.  相似文献   
956.
957.
Genetic analysis was performed on 45 commercial yeasts which are used in winemaking because of their superior fermentation properties. Genome sizes were estimated by propidium iodide fluorescence and flow cytometry. Forty strains had genome sizes consistent with their being diploid, while five had a range of aneuploid genome sizes that ranged from 1.2 to 1.8 times larger. The diploid strains are all Saccharomyces cerevisiae, based on genetic analysis of microsatellite and minisatellite markers and on DNA sequence analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA of four strains. Four of the five aneuploid strains appeared to be interspecific hybrids between Saccharomyces kudriavzevii and Saccharomyces cerevisiae, with the fifth a hybrid between two S. cerevisiae strains. An identification fingerprint was constructed for the commercial yeast strains using 17 molecular markers. These included six published trinucleotide microsatellites, seven new dinucleotide microsatellites, and four published minisatellite markers. The markers provided unambiguous identification of the majority of strains; however, several had identical or similar patterns, and likely represent the same strain or mutants derived from it. The combined use of all 17 polymorphic loci allowed us to identify a set of eleven commercial wine yeast strains that appear to be genetically homozygous. These strains are presumed to have undergone inbreeding to maintain their homozygosity, a process referred to previously as ‘genome renewal’.  相似文献   
958.
The ability of peptides to form stable complexes with MHC class II molecules expressed in the host determines their ability to recruit CD4 T cells during an immune response. In this study, we sought to define the features of the antigenic peptides that control their kinetic stability with I-A(d) because of the diversity of peptides that this molecule is known to present. Peptide dissociation assays indicated that each pocket of I-A(d) displays exquisite sensitivity to side chain structure, size, and charge. Most surprising were results related to the P1 pocket, which has been difficult to define by conventional competition assays. Our studies revealed a considerable degree of specificity in the P1 pocket but also an unexpected degree of structural flexibility. Amino acids with neutral side chains such as Met and the alternatively negatively charged Glu are both highly favored at P1. Interestingly, these two options at the P1 pocket in I-A(d) display dramatically different pH-dependent interactions with the class II molecule. These findings are discussed in the context of a structural model to explain these data and in light of the immunological implications of pH-dependent behavior of class II-peptide complexes in acidic endosomal compartments, where DM-catalyzed loading of class II molecules takes place, and at the neutral pH of the APC cell surface, where class II-peptide complexes promote activation of CD4 T cells.  相似文献   
959.
Alzheimer's disease most closely correlates with the appearance of the neurofibrillary tangles (NFTs), intracellular fibrous aggregates of the microtubule-associated protein, tau. Under native conditions, tau is an unstructured protein, and its physical characterization has revealed no clues about the three-dimensional structural determinants essential for aggregation or microtubule binding. We have found that the natural osmolyte trimethylamine N-oxide (TMAO) induces secondary structure in a C-terminal fragment of tau (tau(187)) and greatly promotes both self-aggregation and microtubule (MT) assembly activity. These processes could be distinguished, however, by a single-amino acid substitution (Tyr(310) --> Ala), which severely inhibited aggregation but had no effect on MT assembly activity. The inability of this mutant to aggregate could be completely reversed by TMAO. We propose a model in which TMAO induces partial order in tau(187), resulting in conformers that may correspond to on-pathway intermediates of either aggregation or tau-dependent MT assembly or both. These studies set the stage for future high-resolution structural characterization of these intermediates and the basis by which Tyr(310) may direct pathologic versus normal tau function.  相似文献   
960.
Recently, phosphoglucose isomerase with a lysyl aminopeptidase (PGI-LysAP) activity was identified in Vibrio vulnificus. In this paper, we demonstrate the proteolytic cleavage of human-derived peptides by PGI-LysAP of V. vulnificus using three approaches: (i) a quantitative fluorescent ninhydrin assay for free lysine, (ii) matrix-assisted laser desorption ionization-two-stage time of flight mass spectrometry (MALDI-TOF-TOF), and (iii) Tricine gel electrophoresis. PGI-LysAP hydrolyzed bradykinin, Lys-bradykinin, Lys-(des-Arg9)-bradykinin, neurokinin A, Met-Lys-bradykinin, histatin 8, and a myosin light chain fragment. We detected the proteolytic release of free L-lysine from peptide digests using a rapid, simple, sensitive, and quantitative fluorescent ninhydrin assay, and results were confirmed by MALDI-TOF-TOF. The use of the fluorescent ninhydrin assay to quantitatively detect free lysine hydrolyzed from peptides is the first application of its kind and serves as a paradigm for future studies. The visualization of peptide hydrolysis was accomplished by Tricine gel electrophoresis. Proteolytic processing of kinins alters their affinities toward specific cellular receptors and initiates signal transduction mechanisms responsible for inflammation, vasodilation, and enhanced vascular permeability. By applying novel approaches to determine the proteolytic potential of bacterial enzymes, we demonstrate that PGI-LysAP has broad exopeptidase activity which may enhance V. vulnificus invasiveness by altering peptides involved in signal transduction pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号