首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   63篇
  718篇
  2024年   1篇
  2023年   12篇
  2022年   23篇
  2021年   43篇
  2020年   21篇
  2019年   22篇
  2018年   30篇
  2017年   18篇
  2016年   25篇
  2015年   58篇
  2014年   56篇
  2013年   54篇
  2012年   59篇
  2011年   48篇
  2010年   28篇
  2009年   28篇
  2008年   36篇
  2007年   31篇
  2006年   23篇
  2005年   20篇
  2004年   26篇
  2003年   21篇
  2002年   14篇
  2001年   8篇
  1999年   1篇
  1998年   4篇
  1996年   3篇
  1994年   1篇
  1990年   3篇
  1980年   1篇
排序方式: 共有718条查询结果,搜索用时 9 毫秒
91.
Our understanding of the molecular events contributing to myogenic control of diameter in cerebral resistance arteries in response to changes in intravascular pressure, a fundamental mechanism regulating blood flow to the brain, is incomplete. Myosin light chain kinase and phosphatase activities are known to be increased and decreased, respectively, to augment phosphorylation of the 20-kDa regulatory light chain subunits (LC20) of myosin II, which permits cross-bridge cycling and force development. Here, we assessed the contribution of dynamic reorganization of the actin cytoskeleton and thin filament regulation to the myogenic response and serotonin-evoked constriction of pressurized rat middle cerebral arteries. Arterial diameter and the levels of phosphorylated LC20, calponin, caldesmon, cofilin, and HSP27, as well as G-actin content, were determined. A decline in G-actin content was observed following pressurization from 10 mm Hg to between 40 and 120 mm Hg and in three conditions in which myogenic or agonist-evoked constriction occurred in the absence of a detectable change in LC20 phosphorylation. No changes in thin filament protein phosphorylation were evident. Pressurization reduced G-actin content and elevated the levels of cofilin and HSP27 phosphorylation. Inhibitors of Rho-associated kinase and PKC prevented the decline in G-actin; reduced cofilin and HSP27 phosphoprotein content, respectively; and blocked the myogenic response. Furthermore, phosphorylation modulators of HSP27 and cofilin induced significant changes in arterial diameter and G-actin content of myogenically active arteries. Taken together, our findings suggest that dynamic reorganization of the cytoskeleton involving increased actin polymerization in response to Rho-associated kinase and PKC signaling contributes significantly to force generation in myogenic constriction of cerebral resistance arteries.  相似文献   
92.
93.

Background

Canine hip dysplasia (CHD) is characterised by a malformation of the hip joint, leading to osteoarthritis and lameness. Current breeding schemes against CHD have resulted in measurable but moderate responses. The application of marker-assisted selection, incorporating specific markers associated with the disease, or genomic selection, incorporating genome-wide markers, has the potential to dramatically improve results of breeding schemes. Our aims were to identify regions associated with hip dysplasia or its related traits using genome and chromosome-wide analysis, study the linkage disequilibrium (LD) in these regions and provide plausible gene candidates. This study is focused on the UK Labrador Retriever population, which has a high prevalence of the disease and participates in a recording program led by the British Veterinary Association (BVA) and The Kennel Club (KC).

Results

Two genome-wide and several chromosome-wide QTLs affecting CHD and its related traits were identified, indicating regions related to hip dysplasia.

Conclusion

Consistent with previous studies, the genetic architecture of CHD appears to be based on many genes with small or moderate effect, suggesting that genomic selection rather than marker-assisted selection may be an appropriate strategy for reducing this disease.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-833) contains supplementary material, which is available to authorized users.  相似文献   
94.

Background

Metabolic syndrome (MetS) is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS) and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined.

Methodology/Principal Findings

Cultured mouse myoblasts (C2C12), adipocytes (3T3-L1), hepatocytes (FL-83B), and monocytes (RAW 264.7) were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line.

Conclusions/Significance

Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated with the development of these diseases in the general population.  相似文献   
95.
96.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   
97.
98.
Animals often exhibit accelerated or “compensatory” growth (CG) after periods of environmentally induced growth depression, raising important questions about how they cope with environmental variability. We tested an underexplored hypothesis regarding the evolutionary consequences of CG; namely, that natural populations differ in CG responses. Common-garden experiments were used to compare subadult growth following food restriction between groups (control, treatment) of two Atlantic salmon (Salmo salar) populations and their first-generation (F1) hybrids. The populations are found at similar latitudes but characterized by differences in migration distance. We predicted that long-distance migrants would better maintain growth trajectories following food restriction than short-distance migrants because they: (1) require larger body sizes to offset energetic costs of migration and (2) face greater time constraints for growth as they must leave non-breeding areas earlier to return to breeding areas. Long-distance migrants grew faster, achieved quicker CG (relative to controls), and their overall body morphology was more streamlined (a trait known to improve swimming efficiency) than slower growing short-distance migrants. F1 hybrids were generally intermediate in “normal” growth, CG, and body morphology. We concluded that CG responses may differ considerably among populations and that the conditions generating them are likely interconnected with selection on a suite of other traits.  相似文献   
99.
Interferon-γ stimulation of human macrophages causes the synthesis and release of neopterin and its reduced form 7,8-dihydroneopterin (7,8-NP). The purpose of this cellular response is undetermined but in vitro experiments suggests 7,8-NP is an antioxidant. We have found 7,8-NP can protect monocyte-like U937 cells from oxidative damage. 7,8-NP inhibited ferrous ion and hypochlorite mediated loss of cell viability. Fe++ mediated lipid peroxidation was effectively inhibited by 7,8-NP, however no correlation was found between peroxide concentration and cell viability. Hypochlorite was scavenged by 7,8-NP, preventing the loss of cell viability. 7,8-NP was less effective in inhibiting H2O2-mediated loss of cell viability with significant inhibition only occurring at high 7,8-NP concentrations. Analysis of cellular protein hydrolysates showed none of the oxidants caused the formation of any protein bound DOPA or dityrosine but did show 7,8-NP prevented the loss of cellular tyrosine by HOCl. Our data suggests macrophages may synthesize 7,8-NP for antioxidant protection during inflammatory events in vivo.  相似文献   
100.
Previous work has shown that male flesh flies (Sarcophaga crassipalpis Macquart) exhibit an ontogeny of behaviour from eclosion through sexual maturity that includes extensive changes in the expression of aggressive, non‐aggressive interactive and non‐interactive behaviours. To determine how the presence of a female flesh fly influences the manifestation of these behaviours, male flesh flies of different ages post‐eclosion are paired with same‐age females and their behaviours are monitored in a simple arena during a 50‐min observation period. All flies are socially isolated until pairing. Although the levels of expression of aggressive and non‐aggressive interactive behaviours are depressed relative to previous findings in male‐opponent pairs, the ontogeny of aggression still occurs as indicated by a significant increase, with age, in the agonistic behaviour ‘hold’. Similar to male‐opponent pairs and individual males, the performance by males of the non‐interactive behaviours ‘walking’ and ‘standing’ diminishes, whereas ‘upside‐down’ increases with age. By contrast, ‘grooming’ shows a significant age‐related decline. No courtship behaviours are observed in the males, although the aggressive behaviour ‘hold’ is a significant transition to mating. Females show no obvious courtship or rejection behaviours, although the significant increase in ‘upside‐down’ with age could possibly be a behavioural gateway to mating. The results of this study indicate that extensive age‐related changes encompassing the entire behavioural repertoire are intrinsic to male flesh flies and persist under a variety of different social contexts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号