全文获取类型
收费全文 | 94篇 |
免费 | 18篇 |
专业分类
112篇 |
出版年
2023年 | 2篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 2篇 |
2019年 | 1篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 5篇 |
2014年 | 4篇 |
2013年 | 7篇 |
2012年 | 7篇 |
2011年 | 6篇 |
2010年 | 4篇 |
2009年 | 4篇 |
2008年 | 1篇 |
2007年 | 4篇 |
2005年 | 1篇 |
2004年 | 2篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 7篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1983年 | 2篇 |
1982年 | 1篇 |
排序方式: 共有112条查询结果,搜索用时 15 毫秒
71.
TD Smith KP Bhatnagar CJ Bonar KL Shimp MP Mooney MI Siegel 《American journal of physical anthropology》2003,122(3):301-301
72.
73.
74.
Jennifer L Booth Todd M Umstead Sanmei Hu Kevin F Dybvig Timothy K Cooper Ronald P Wilson Zissis C Chroneos 《Comparative medicine》2014,64(6):424-439
Mycoplasmosis is a frequent causative microbial agent of community-acquired pneumonia and has been linked to exacerbation of chronic obstructive pulmonary disease. The macrophage class A scavenger receptor (SRA) facilitates the clearance of noxious particles, oxidants, and infectious organisms by alveolar macrophages. We examined wildtype and SRA−/− mice, housed in either individually ventilated or static filter-top cages that were cycled with fresh bedding every 14 d, as a model of gene–environment interaction on the outcome of pulmonary Mycoplasma pulmonis infection. Intracage NH3 gas measurements were recorded daily prior to infection. Mice were intranasally infected with 1 × 107 cfu M. pulmonis UAB CT and evaluated at 3, 7, and 14 d after inoculation. Wildtype mice cleared 99.5% of pulmonary M. pulmonis by 3 d after infection but remained chronically infected through the study. SRA−/− mice were chronically infected with 40-fold higher mycoplasma numbers than were wildtype mice. M. pulmonis caused a chronic mixed inflammatory response that was accompanied with high levels of IL1β, KC, MCP1, and TNFα in SRA−/− mice, whereas pulmonary inflammation in WT mice was represented by a monocytosis with elevation of IL1β. Housing had a prominent influence on the severity and persistence of mycoplasmosis in SRA−/− mice. SRA-/- mice housed in static cages had an improved recovery and significant changes in surfactant proteins SPA and SPD compared with baseline levels. These results indicate that SRA is required to prevent chronic mycoplasma infection of the lung. Furthermore, environmental conditions may exacerbate chronic inflammation in M. pulmonis-infected SRA−/− mice.Abbreviations: BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; KC, keratinocyte-derived chemokine (CXCL1); MCP1, monocyte chemotactic protein 1; SPA, surfactant protein A (SFTPA1); SPB, surfactant protein B (SFTPB); SPD, surfactant protein D (SFTPD); SRA, class A scavenger receptor (MSR1); WT, wildtypeThere are numerous options for the housing and husbandry of rodents in the laboratory setting. Various available choices in caging, bedding material, and cage-change frequency have the potential to effect physiologic values and thus experimental outcomes.20,108 In many facilities, current practices involve performing cage changes every 1 to 2 wk, with some facilities exploring the possibility of extending these practices to every 4 wk.97 Cage-change frequency practices are established at various institutions after consideration of several variables that affect animal health, welfare, and cost. Ideally, an appropriate sanitation program provides clean and dry bedding, adequate air quality, and clean cage surfaces and accessories.44 When establishing performance standards for a sanitation program that are different from those which are recommended in the Guide for the Care and Use of Animals in Research,44 microenvironmental conditions, including intracage humidity, temperature, animal behavior and appearance, microbiologic loads, and levels of pollutants such as CO2 and NH3, should be evaluated and verified. Although there are currently no established NH3 exposure limits for laboratory animals, the human occupational exposure limit of 25 ppm as an 8-h time-weighted average, established by the National Institute for Occupational Safety and Health, is often referenced as a guideline for animals.95 Multiple factors, such as animal cage density, sex, age, bedding type, reusable compared with disposable caging, static caging compared with IVC, and cage-change frequency, influence intracage and ambient NH3 levels.82,83,97 Only limited information is available that addresses the effect of natural intracage NH3 levels on respiratory function in experimental rodents and whether exposure to high NH3 levels under current standard practices affects the results of respiratory disease research.Ammonia is an alkaline, corrosive, and irritant gas that is very water soluble. It reacts with the moisture of the mucous membranes of the eyes, mouth, and respiratory tract to form ammonium hydroxide in an exothermic reaction, resulting in thermal and chemical burns.68 Clinical symptoms in humans exposed to high levels of NH3 include eye irritation, headaches, and multiple acute and chronic respiratory symptoms, such as irritation of the nose, pharynx, and sinuses, and in severe cases, development of bronchitis and hyper-reactive airway disease.79 Animals are similarly susceptible to NH3-induced pulmonary disease.23,31,48Mice exposed to naturally increasing levels of intracage NH3 can develop lesions in the rostral nasal cavity, with decreasing severity of the lesions moving caudally into the nasopharynx, and no lesions in the lung.97 However, dust is another common environmental pollutant that is often present in animal settings. Dust particles readily absorb NH3, which then serve as a source of NH3 deposition into the lower respiratory tract. Dust particulate can range from large (300 µm), minimally respirable particles to very fine (< 50 µm) particulate matter, which can settle deep within the alveoli.10,102 The mucociliary system of the respiratory tract is the first line of defense against inspired noxious stimuli and pathogens. Exposure of the ciliated respiratory epithelium to the damaging effects of NH3 are known to cause decreased mucociliary beating.56 Disruption of the respiratory mucociliary escalator initiated by NH3 exposure can then promote establishment of chronic infections and inflammation of the airway mucosa.11,87 Therefore, NH3 potentially can cause pathophysiologic changes of the lung in the absence of histopathologic lesions.Our primary goal was to analyze the effect of 2 housing modalities, which result in different intracage NH3 concentrations, on mice that were challenged with a respiratory pathogen. Mycoplasma pulmonis was chosen as a model because it is a well-established model in rodents which causes chronic mycoplasmosis and reproduces the features of M. pneumoniae in humans.22,41
M. pneumoniae infection is a frequent and contagious etiology of community-acquired pneumonia causing tracheobronchitis, sneezing, cough, and inflammation of the respiratory tract.8,12,47,63 Moreover, atypical and difficult-to-detect respiratory pathogens such as Chlamydophila pneumoniae and Mycoplasma pneumoniae that can establish chronic asymptomatic infections may contribute to both the development and exacerbation of COPD26,45,57,58,62,63,66,72,96,103 and asthma.8,51,65 Infection with M. pulmonis in rodents causes rhinitis, otitis media, tracheitis, and pneumonia, which can be exacerbated by housing conditions and genetic background.14,32,85 The mechanism of pathogenicity of mycoplasmas continues to be an area of interest in the research.The innate host factors protecting against pulmonary mycoplasmosis include the secreted surfactant protein opsonins SPA and SPD, surfactant phospholipids, and the molecular pattern-recognition receptor TLR2.15,16,54,74 Therefore, compared with their wildtype (WT) counterparts, SPA-deficient mice infected with either M. pulmonis or M. pneumoniae develop more severe inflammation and have decreased capacity to clear these infections from the lungs.43 In addition, TLR2-deficient mice exhibit decreased clearance and increased inflammation in response to mycoplasma infection.60,104Second, we wanted to study the effects of SRA deficiency in mycoplasmosis. The class A scavenger receptor (SRA) modulates inflammatory responses and mediates the clearance of airborne oxidants, particulates, and respiratory pathogens.3,17,18,49,88,101 Inhibition of SRA expression in alveolar macrophages in an elastase–LPS model of COPD was associated with decreased clearance of Haemophilus influenzae.33 Lack of SRA similarly impaired alveolar macrophage-mediated clearance of Streptococcus pneumoniae,5 environmental particles,6 and ozone-oxidized lipids18 by alveolar macrophages. Absence of SRA also enhanced hyperoxia-induced lung injury49 and exacerbated inflammation in response to Staphylococcus aureus infection.88 SRA appears to have antiinflammatory properties with the capacity to modify macrophage phenotype and suppress polarization toward the M1 alternative macrophage activation state.13 The SRA gene (MSR1) is polymorphic in both mice and humans.19,29,105 Genetic association studies in humans, however, showed that subjects with truncations or point mutations in MSR1 have significantly increased risk for the development of pulmonary diseases such as COPD33,38,71,94 and asthma.5 Our understanding of the immune factors that contribute to mycoplasmosis is far from complete.In the present study, by investigating the role of SRA in mycoplasmosis jointly with the effects of housing, we demonstrated that genetic and environmental factors both serve as critical players in disease progression. We show that SRA-deficient mice are susceptible to chronic colonization with M. pulmonis and development of chronic mycoplasma-induced bronchopneumonia characterized by persistent multicellular inflammation. Furthermore, we show that housing conditions influence the effect of SRA deficiency on the severity of mycoplasmosis. Taken together, these results indicate that lack of SRA function impairs host protection against both infectious and environmental insults. 相似文献
75.
Regulation of a restriction and modification system via DNA inversion in Mycoplasma pulmonis 总被引:8,自引:1,他引:8
An invertible DNA element of 6.8 kb, designated the hsd1 locus, was identified in the chromosome of Mycoplasma pulmonis. Infection of host cells with mycoplasma virus P1 revealed that the organism's restriction and modification (R-M) properties are controlled by inversion of hsd1. The nucleotide sequence of hsd1 revealed several genes, the predicted amino acids of which bear striking similarity to the subunits of the type I R-M enzymes previously found only in enteric bacteria. 相似文献
76.
MP Lisovoi NM Lesovoy GI Vasechko 《Archives Of Phytopathology And Plant Protection》2013,46(2):123-127
A new method of selection of the winter wheat varieties has been tested for resistance to the pest insects' complex by the traits of plants that are the markers of plant resistance. It makes it possible to use this method from year to year independently of the pests' density. 相似文献
77.
Crustacean and cheliceratan hemocyanins (oxygen-transport proteins) and
insect hexamerins (storage proteins) are homologous gene products, although
the latter do not bind oxygen and do not possess the copper- binding
histidines present in the hemocyanins. An alignment of 19 amino acid
sequences of hemocyanin subunits and insect hexamerins was made, based on
the conservation of elements of secondary structure observed in X-ray
structures of two hemocyanin subunits. The alignment was analyzed using
parsimony and neighbor-joining methods. Results provide strong indications
for grouping together the sequences of the 2 crustacean hemocyanin
subunits, the 5 cheliceratan hemocyanin subunits, and the 12 insect
hexamerins. Within the insect clade, four methionine- rich proteins, four
arylphorins, and two juvenile hormone-suppressible proteins from
Lepidoptera, as well as two dipteran proteins, form four separate groups.
In the absence of an outgroup sequence, it is not possible to present
information about the ancestral state from which these proteins are
derived. Although this family of proteins clearly consists of homologous
gene products, there remain striking differences in gene organization and
site of biosynthesis of the proteins within the cell. Because studies on
18S and 12S rRNA sequences indicate a rather close relationship between
insects and crustaceans, we propose that hemocyanin is the ancestral
arthropod protein and that insect hexamerins lost their copper-binding
capability after divergence of the insects from the crustaceans.
相似文献
78.
Kuttner-Kondo LA Dybvig MP Mitchell LM Muqim N Atkinson JP Medof ME Hourcade DE 《The Journal of biological chemistry》2003,278(52):52386-52391
The cleavage of C3 by the C3 convertases (C3bBb and C4b2a) determines whether complement activation proceeds. Dissociation (decay acceleration) of these central enzymes by the regulators decay-accelerating factor (DAF), complement receptor 1 (CR1), factor H, and C4-binding protein (C4BP) controls their function. In a previous investigation, we obtained evidence implicating the alpha4/5 region of the type A domain of Bb (especially Tyr338) in decay acceleration of C3bBb and proposed this site as a potential interaction point with DAF and long homologous repeat A of CR1. Because portions of only two DAF complement control protein domains (CCPs), CCP2 and CCP3, are necessary to mediate its decay of the CP C3 convertase (as opposed to portions of at least three CCPs in all other cases, e.g. CCPs 1-3 of CR1), DAF/C4b2a provides the simplest structural model for this reaction. Therefore, we examined the importance of the C2 alpha4/5 site on decay acceleration of C4b2a. Functional C4b2a complexes made with the C2 Y327A mutant, the C2 homolog to factor B Y338A, were highly resistant to DAF, C4BP, and long homologous repeat A of CR1, whereas C2 substitutions in two nearby residues (N324A and L328A) resulted in partial resistance. Our new findings indicate that the alpha4/5 region of C2a is critical to decay acceleration mediated by DAF, C4BP, and CR1 and suggest that decay acceleration of C4b2a and C3bBb requires interaction of the convertase alpha4/5 region with a CCP2/CCP3 site of DAF or structurally homologous sites of CR1 and C4BP. 相似文献
79.
Degenerate oligonucleotide primers for enzymatic amplification of recA sequences from gram-positive bacteria and mycoplasmas. 下载免费PDF全文
K Dybvig S K Hollingshead D G Heath D B Clewell F Sun A Woodard 《Journal of bacteriology》1992,174(8):2729-2732
RecA protein in gram-negative bacteria, especially in Escherichia coli, has been extensively studied, but little is known about this key enzyme in other procaryotes. Described here are degenerate oligonucleotide primers that have been used to amplify by the polymerase chain reaction (PCR) recA sequences from several gram-positive bacteria and mycoplasmas. The DNA sequences of recA PCR products from Streptococcus pyogenes, Streptococcus mutans, Enterococcus faecalis, and Mycoplasma pulmonis were determined and compared. These data indicate that the M. pulmonis recA gene has diverged significantly from recA genes of other eubacteria. It should be possible to use cloned recA PCR products to construct recA mutants, thereby providing the means of elucidating homologous genetic recombination and DNA repair activities in these organisms. 相似文献
80.
Amy M. Teachman C. Todd French Huilan Yu Warren L. Simmons Kevin Dybvig 《Journal of bacteriology》2002,184(4):947-951
Experiments were undertaken to examine gene transfer in Mycoplasma pulmonis. Parent strains containing transposon-based tetracycline and chloramphenicol resistance markers were combined to allow transfer of markers. Two mating protocols were developed. The first consisted of coincubating the strains in broth culture for extended periods of time. The second protocol consisted of a brief incubation of the combined strains in a 50% solution of polyethylene glycol. Using either protocol, progeny that had acquired antibiotic resistance markers from both parents were obtained. Analysis of the progeny indicated that only the transposon and not flanking genomic DNA was transferred to the recipient cell. Gene transfer was DNase resistant and probably the result of conjugation or cell fusion. 相似文献