首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   21篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2015年   3篇
  2013年   2篇
  2012年   9篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   9篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1985年   1篇
  1981年   1篇
排序方式: 共有107条查询结果,搜索用时 62 毫秒
61.
Abstract

The molecular structure of nucleoprotamine from Gibbula divaricata and its packing in oriented fibers has been modelled both to fit the X-ray diffraction pattern and to avoid steric compression. The representative model consists of 51 poly(dinucleotide) B-DNA helices with 51 poly(hexapeptide) chains associated with the major grooves. The prevailing peptide conformation is β, The four arginine residues present are hydrogen-bonded to DNA phosphates while neutral peptides protrude into the minor grooves of neighboring nucleoprotamine molecules which are packed 2.61 nm apart in a screw-disordered, quasi-hexagonal lattice. This model reconciles a number of earlier, apparently conflicting experimental results and explains the remarkable stability of nucleoprotamines.  相似文献   
62.
Vaults are ubiquitous ribonucleoprotein complexes involved in a diversity of cellular processes, including multidrug resistance, transport mechanisms and signal transmission. The vault particle shows a barrel‐shaped structure organized in two identical moieties, each consisting of 39 copies of the major vault protein MVP. Earlier data indicated that vault halves can dissociate at acidic pH. The crystal structure of the vault particle solved at 8 Å resolution, together with the 2.1‐Å structure of the seven N‐terminal domains (R1–R7) of MVP, reveal the interactions governing vault association and provide an explanation for a reversible dissociation induced by low pH. The structural comparison with the recently published 3.5 Å model shows major discrepancies, both in the main chain tracing and in the side chain assignment of the two terminal domains R1 and R2.  相似文献   
63.
Mycoplasma genitalium is an emerging human pathogen with the smallest genome found among self‐replicating organisms. M. genitalium presents a complex cytoskeleton with a differentiated protrusion known as the terminal organelle. This polar structure plays a central role in functions essential for the virulence of the microorganism, such as motility and cell‐host adhesion. A well‐conserved Enriched in Aromatic and Glycine Residues motif, the EAGR box, is present in many of the proteins found in the terminal organelle. We determined the crystal structure of the globular domain from M. genitalium MG200 that contains an EAGR box. This structural information is the first at near atomic resolution for the components of the terminal organelle. The structure revealed a dimer stabilized by a compact hydrophobic core that extends throughout the dimer interface. Monomers present a new fold that contains an accurate intra‐subunit symmetry relating two conspicuous hairpins. Some features, such as the domain plasticity and the presence and organization of the intra‐ and inter‐subunit symmetry axes, support a role for the EAGR box in protein–protein interactions. Genetic, biochemical and microcinematography analyses of MG200 variants lacking the EAGR box containing domain confirm the relevant and specific association of this domain with cell motility.  相似文献   
64.
About thirty years ago the crystal structures of the heme catalases from Penicillium vitale (PVC) and, a few months later, from bovine liver (BLC) were published. Both enzymes were compact tetrameric molecules with subunits that, despite their size differences and the large phylogenetic separation between the two organisms, presented a striking structural similarity for about 460 residues. The high conservation, confirmed in all the subsequent structures determined, suggested a strong pressure to preserve a functional catalase fold, which is almost exclusively found in these mono-functional heme catalases. However, even in the absence of the catalase fold an efficient catalase activity is also found in the heme containing catalase-peroxidase proteins. The structure of these broad substrate range enzymes, reported for the first time less than ten years ago from the halophilic archaebacterium Haloarcula marismortui (HmCPx) and from the bacterium Burkholderia pseudomallei (BpKatG), showed a heme pocket closely related to that of plant peroxidases, though with a number of unique modifications that enable the catalase reaction. Despite the wealth of structural information already available, for both monofunctional catalases and catalase-peroxidases, a number of unanswered major questions require continuing structural research with truly innovative approaches.  相似文献   
65.
The catalase reaction of catalase-peroxidases involves catalase-specific features built into a peroxidase core. An arginine, 20 A from the active-site heme, acts as a molecular switch moving between two conformations, one that activates heme oxidation and one that activates oxoferryl heme reduction by H(2)O(2), facilitating the catalatic pathway in a peroxidase. The influence of the arginine is imparted to the heme through its association with or dissociation from a tyrosinate that modulates reactivity through a Met-Tyr-Trp crosslinked adduct and a pi electron interaction of the heme with the adduct Trp.  相似文献   
66.
The large subunit catalase HPII from Escherichia coli can be truncated by proteolysis to a structure similar to small subunit catalases. Mass spectrometry analysis indicates that there is some heterogeneity in the precise cleavage sites, but approximately 74 N-terminal residues, 189 C-terminal residues, and a 9-11-residue internal fragment, including residues 298-308, are removed. Crystal structure refinement at 2.8 A reveals that the tertiary and quaternary structure of the native enzyme is retained with only very subtle changes despite the loss of 36% of the sequence. The truncated variant exhibits a 1.8 times faster turnover rate and enhanced sensitivity to high concentrations of H(2)O(2), consistent with easier access of the substrate to the active site. In addition, the truncated variant is more sensitive to inhibition, particularly by reagents such as aminotriazole and azide which are larger than substrate H(2)O(2). The main channel leading to the heme cavity is largely unaffected by the truncation, but the lateral channel is shortened and its entrance widened by removal of the C-terminal domain, providing an explanation for easier access to the active site. Opening of the entrance to the lateral channel also opens the putative NADPH binding site, but NADPH binding could not be demonstrated. Despite the lack of bound NADPH, the compound I species of both native and truncated HPII are reduced back to the resting state with compound II being evident in the absorbance spectrum only of the heme b-containing H392A variant.  相似文献   
67.
Substrate H2O2 must gain access to the deeply buried active site of catalases through channels of 30-50 A in length. The most prominent or main channel approaches the active site perpendicular to the plane of the heme and contains a number of residues that are conserved in all catalases. Changes in Val169, 8 A from the heme in catalase HPII from Escherichia coli, introducing smaller, larger or polar side chains reduces the catalase activity. Changes in Asp181, 12 A from the heme, reduces activity by up to 90% if the negatively charged side chain is removed when Ala, Gln, Ser, Asn, or Ile are the substituted residues. Only the D181E variant retains wild type activity. Determination of the crystal structures of the Glu181, Ala181, Ser181, and Gln181 variants of HPII reveals lower water occupancy in the main channel of the less active variants, particularly at the position forming the sixth ligand to the heme iron and in the hydrophobic, constricted region adjacent to Val169. It is proposed that an electrical potential exists between the negatively charged aspartate (or glutamate) side chain at position 181 and the positively charged heme iron 12 A distant. The potential field acts upon the electrical dipoles of water generating a common orientation that favors hydrogen bond formation and promotes interaction with the heme iron. Substrate hydrogen peroxide would be affected similarly and would enter the active site oriented optimally for interaction with active site residues.  相似文献   
68.
The three-dimensional structures of the Fab fragment of a neutralizing antibody raised against a foot-and-mouth disease virus (FMDV) of serotype C1, alone and complexed to an antigenic peptide representing the major antigenic site A (G-H loop of VP1), have been determined. As previously seen in a complex of the same antigen with another antibody which recognizes a different epitope within antigenic site A, the receptor recognition motif Arg-Gly-Asp and some residues from an adjacent helix participate directly in the interaction with the complementarity-determining regions of the antibody. Remarkably, the structures of the two antibodies become more similar upon binding the peptide, and both undergo considerable induced fit to accommodate the peptide with a similar array of interactions. Furthermore, the pattern of reactivities of five additional antibodies with versions of the antigenic peptide bearing amino acid replacements suggests a similar pattern of interaction of antibodies raised against widely different antigens of serotype C. The results reinforce the occurrence of a defined antigenic structure at this mobile, exposed antigenic site and imply that intratypic antigenic variation of FMDV of serotype C is due to subtle structural differences that affect antibody recognition while preserving a functional structure for the receptor binding site.  相似文献   
69.
The refined structure of the Fab fragment of the monoclonal antibody CRIS-I (IgG2a kappa) against the leukocyte differentiation antigen CD5, determined at 1.9 A resolution with an agreement R-factor of 18.3%, reveals a variant of the canonical conformations proposed for the light chain complementarity determining region L3 (CDR-L3). This is the first Fab structure available with a kappa light chain in which the CDR-L3 lacks the key proline residue in either position 94 or 95. The conformation found could be significant for about 10% of the murine IgG molecules with kappa light chains without proline in their CDR-L3 sequences.  相似文献   
70.
We synthesized and solved the crystalline structure of the oligopeptide acetyl-(glycyl-beta-alanyl)2-NH propyl. The crystal is formed by layers of helical molecules with the same chirality; however, right-handed layers alternate with left-handed ones. Inside every layer, the packing of helices is pseudohexagonal with hydrogen bonds between neighbor molecules. The structure found affords direct support for the model proposed by Crick and Rich for polyglycine II and also provides an interpretation for the structure of a newly found family of polyamides that do not form sheets as observed in most nylon structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号